4Misc_Start2#4Platform@9VersionCheck xHH%.7@gyHHdh xHH%.7@gyHHdh x HH%.7@gyHHdh ^Graph*4;WDashSettings#  !4 4 4 4 4 4 homeUUdD:Dóri:3_papers:17_PB_Hofmeister_activity:PB_Figures:{RecentWindowsGCaCl2CaCl2CsClCsClKClKClLaCl3LaCl3NaClNaClWaveSelectorWidget 4Misc_End2#4XOPState_Start2#4XOPState_End2#lV_chisq#ݲJ?V_numNaNsV_numINFsV_npnts"@V_nterms@V_nheldV_startRowV_endRow @V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunkB•Edit as "KCl" •DeletePoints 5,1, KCl_1mM_gua_conc,KCl_1mM_v •Display KCl_1mM_v vs KCl_1mM_gua_conc as "KCl" •ModifyGraph mode=3,marker=19,msize=3,useMrkStrokeRGB=1 •ModifyGraph margin(left)=185,margin(bottom)=185,margin(right)=5,margin(top)=5,width=18,height=207 •ModifyGraph margin(left)=44,margin(bottom)=44,width=185,height=185 •ModifyGraph mirror=2,btLen=3 •SetAxis bottom 0,* •SetAxis left 0,1 •Label left "\\Z10Reakciósebesség (10-9 M/s)";DelayUpdate •Label bottom "\\Z10Guaiacol koncentráció (mM)" •AppendToGraph KCl_10mM_v vs KCl_10mM_gua_conc •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(KCl_10mM_v)=16,rgb(KCl_10mM_v)=(16385,16388,65535) •AppendToGraph KCl_100mM_v vs KCl_100mM_gua_conc •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(KCl_100mM_v)=17,rgb(KCl_100mM_v)=(26214,26214,26214) •ModifyGraph rgb(KCl_100mM_v)=(30583,30583,30583) •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef KCl_1mM_v /X=KCl_1mM_gua_conc /D Fit converged properly fit_KCl_1mM_v= Michaelis(W_coef,x) W_coef={0.70881,3.8132} V_chisq= 0.00323864;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.0438,0.633} Coefficient values ± one standard deviation vmax = 0.70881 ± 0.0438 Km = 3.8132 ± 0.633 •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef KCl_10mM_v /X=KCl_10mM_gua_conc /D Fit converged properly fit_KCl_10mM_v= Michaelis(W_coef,x) W_coef={1.0252,5.2718} V_chisq= 0.00459983;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.084,0.904} Coefficient values ± one standard deviation vmax = 1.0252 ± 0.084 Km = 5.2718 ± 0.904 •ModifyGraph rgb(fit_KCl_10mM_v)=(16385,16388,65535) •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef KCl_100mM_v /X=KCl_100mM_gua_conc /D Fit converged properly fit_KCl_100mM_v= Michaelis(W_coef,x) W_coef={1.0689,2.4021} V_chisq= 0.00549327;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0336,0.231} Coefficient values ± one standard deviation vmax = 1.0689 ± 0.0336 Km = 2.4021 ± 0.231 •ModifyGraph rgb(fit_KCl_100mM_v)=(30583,30583,30583) •Legend/C/N=text0/J/F=0/A=MC "\\s(KCl_1mM_v) KCl_1mM\r\\s(KCl_10mM_v) KCl_10mM\r\\s(KCl_100mM_v) KCl_100mM" •Legend/C/N=text0/J "\\s(KCl_1mM_v) KCl 1mM\r\\s(KCl_10mM_v) KCl 10mM\r\\s(KCl_100mM_v) KCl 100mM" •Edit as "NaCl" •ModifyGraph rgb(KCl_100mM_v)=(34952,34952,34952) •ModifyGraph rgb(fit_KCl_100mM_v)=(39321,39321,39321) •ModifyGraph rgb(KCl_100mM_v)=(39321,39321,39321) •Display nacl_1mM_v vs nacl_1mM_gua_conc as "NaCl" •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •ModifyGraph mirror=2,btLen=3 •Label left "\\Z10Reakciósebesség (10-9 M/s)" •Label bottom "\\Z10Guaiacol koncentráció (mM)" •SetAxis bottom 0,12 •SetAxis left 0,1.6 •ModifyGraph mode=3,marker=19,msize=3,useMrkStrokeRGB=1 •AppendToGraph nacl_10mM_v vs nacl_10mM_gua_conc •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(nacl_10mM_v)=16,rgb(nacl_10mM_v)=(16385,16388,65535) •AppendToGraph nacl_100mM_v vs nacl_100mM_gua_conc •ModifyGraph mode=3,msize=3,marker(nacl_100mM_v)=17,rgb(nacl_100mM_v)=(39321,39321,39321) •ModifyGraph useMrkStrokeRGB=1 •Edit as "CsCl" •Display CsCl_1mM_v vs CsCl_1mM_gua_conc as "CsCl" •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •ModifyGraph mirror=2,btLen=3 •SetAxis left 0.2,9 •ModifyGraph mode=3,marker=19,msize=3,useMrkStrokeRGB=1 •Label bottom "\\Z10Guaiacol koncentráció (mM)" •Label left "\\Z10Reakciósebesség (10-9 M/s)" •AppendToGraph CsCl_10mM_v vs CsCl_10mM_gua_conc •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(CsCl_10mM_v)=16,rgb(CsCl_10mM_v)=(16385,16388,65535) •SetAxis bottom 0,* •SetAxis bottom 0,14 •AppendToGraph CsCl_100mM_v vs CsCl_100mM_gua_conc •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(CsCl_100mM_v)=17,rgb(CsCl_100mM_v)=(39321,39321,39321) •Edit as "CaCl2" •Display 'CaCl2_0,1mM_v' vs 'CaCl2_0,1mM_gua_conc' as "CaCl2" •ModifyGraph mode=3,marker=19,msize=3,useMrkStrokeRGB=1 •ModifyGraph margin(left)=1247,margin(bottom)=1247,margin(right)=141,margin(top)=141,width=5244.09,height=5244.09 •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •SetAxis left 0.1,1 •ModifyGraph mirror=2,btLen=3 •SetAxis bottom 0,* •Label bottom "\\Z10Guaiacol koncentráció (mM)" •Label left "\\Z10Reakciósebesség (10-9 M/s)" •AppendToGraph CaCl2_1mM_v vs CaCl2_1mM_gua_conc •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(CaCl2_1mM_v)=16,rgb(CaCl2_1mM_v)=(39321,39321,39321) •ModifyGraph rgb(CaCl2_1mM_v)=(16385,16388,65535) •AppendToGraph CaCl2_10mM_v vs CaCl2_10mM_gua_conc •ModifyGraph mode=3,msize=3,marker(CaCl2_10mM_v)=17,rgb(CaCl2_10mM_v)=(39321,39321,39321) •ModifyGraph useMrkStrokeRGB=1 •Edit as "LaCl3" •Display 'LaCl3_0,001mM_v' vs 'LaCl3_0,001mM_gua_conc' as "LaCl3" •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •ModifyGraph mirror=2,btLen=3 •ModifyGraph mode=3,marker=19,msize=3,useMrkStrokeRGB=1 •SetAxis left 0,1 •SetAxis bottom 0,* •Label left "\\Z10Reakciósebesség (10-9 M/s)" •Label bottom "\\Z10Guaiacol koncentráció (mM)" •AppendToGraph 'LaCl3_0,01mM_v' vs 'LaCl3_0,01mM_gua_conc' •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker('LaCl3_0,01mM_v')=16,rgb('LaCl3_0,01mM_v')=(16385,16388,65535) •AppendToGraph 'LaCl3_0,1mM_v' vs 'LaCl3_0,1mM_gua_conc' •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker('LaCl3_0,1mM_v')=17,rgb('LaCl3_0,1mM_v')=(39321,39321,39321) •SetAxis left 0,1 •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef nacl_1mM_v /X=nacl_1mM_gua_conc /D Fit converged properly fit_nacl_1mM_v= Michaelis(W_coef,x) W_coef={1.6386,4.4665} V_chisq= 0.0181579;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.138,0.863} Coefficient values ± one standard deviation vmax = 1.6386 ± 0.138 Km = 4.4665 ± 0.863 •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef nacl_10mM_v /X=nacl_10mM_gua_conc /D Fit converged properly fit_nacl_10mM_v= Michaelis(W_coef,x) W_coef={1.714,4.6259} V_chisq= 0.00817355;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.0841,0.561} Coefficient values ± one standard deviation vmax = 1.714 ± 0.0841 Km = 4.6259 ± 0.561 •ModifyGraph rgb(fit_nacl_10mM_v)=(16385,16388,65535) •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef nacl_100mM_v /X=nacl_100mM_gua_conc /D Fit converged properly fit_nacl_100mM_v= Michaelis(W_coef,x) W_coef={1.8036,3.1589} V_chisq= 0.0197483;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0836,0.42} Coefficient values ± one standard deviation vmax = 1.8036 ± 0.0836 Km = 3.1589 ± 0.42 •ModifyGraph rgb(fit_nacl_100mM_v)=(39321,39321,39321) •Legend/C/N=text0/J/F=0/A=MC "\\s(nacl_1mM_v) NaCl 1mM\r\\s(nacl_10mM_v) NaCl 10mM\r\\s(nacl_100mM_v) NaCl 100mM" •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef CsCl_1mM_v /X=CsCl_1mM_gua_conc /D Fit converged properly fit_CsCl_1mM_v= Michaelis(W_coef,x) W_coef={2.9658,4.6503} V_chisq= 0.276885;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.462,1.71} Coefficient values ± one standard deviation vmax = 2.9658 ± 0.462 Km = 4.6503 ± 1.71 •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef CsCl_10mM_v /X=CsCl_10mM_gua_conc /D Fit converged properly fit_CsCl_10mM_v= Michaelis(W_coef,x) W_coef={4.786,4.9197} V_chisq= 0.67353;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.675,1.55} Coefficient values ± one standard deviation vmax = 4.786 ± 0.675 Km = 4.9197 ± 1.55 •ModifyGraph rgb(fit_CsCl_10mM_v)=(16385,16388,65535) •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef CsCl_100mM_v /X=CsCl_100mM_gua_conc /D Fit converged properly fit_CsCl_100mM_v= Michaelis(W_coef,x) W_coef={14.461,10.406} V_chisq= 1.60415;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={2.74,3.41} Coefficient values ± one standard deviation vmax = 14.461 ± 2.74 Km = 10.406 ± 3.41 •ModifyGraph rgb(fit_CsCl_100mM_v)=(39321,39321,39321) •Legend/C/N=text0/J/F=0/A=MC "\\s(CsCl_1mM_v) CsCl 1mM\r\\s(CsCl_10mM_v) CsCl 10mM\r\\s(CsCl_100mM_v) CsCl 100mM" •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef 'CaCl2_0,1mM_v' /X='CaCl2_0,1mM_gua_conc' /D Fit converged properly 'fit_CaCl2_0,1mM_v'= Michaelis(W_coef,x) W_coef={0.95781,2.8782} V_chisq= 0.00567956;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.0453,0.412} Coefficient values ± one standard deviation vmax = 0.95781 ± 0.0453 Km = 2.8782 ± 0.412 •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef CaCl2_1mM_v /X=CaCl2_1mM_gua_conc /D Fit converged properly fit_CaCl2_1mM_v= Michaelis(W_coef,x) W_coef={1.0839,3.127} V_chisq= 0.00292349;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.0348,0.294} Coefficient values ± one standard deviation vmax = 1.0839 ± 0.0348 Km = 3.127 ± 0.294 •ModifyGraph rgb(fit_CaCl2_1mM_v)=(16385,16388,65535) •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef CaCl2_10mM_v /X=CsCl_10mM_gua_conc /D Fit converged properly fit_CaCl2_10mM_v= Michaelis(W_coef,x) W_coef={0.88052,2.5256} V_chisq= 0.575995;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.376,3.18} Coefficient values ± one standard deviation vmax = 0.88052 ± 0.376 Km = 2.5256 ± 3.18 •RemoveFromGraph fit_CaCl2_10mM_v •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef CaCl2_10mM_v /X=CaCl2_10mM_gua_conc /D Fit converged properly fit_CaCl2_10mM_v= Michaelis(W_coef,x) W_coef={1.1492,2.4595} V_chisq= 0.0028972;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0299,0.177} Coefficient values ± one standard deviation vmax = 1.1492 ± 0.0299 Km = 2.4595 ± 0.177 •ModifyGraph rgb(fit_CaCl2_10mM_v)=(39321,39321,39321) •Legend/C/N=text0/J/F=0/A=MC "\\s('CaCl2_0,1mM_v') 'CaCl2 0,1mM\r\\s(CaCl2_1mM_v) CaCl2 1mM\r\\s(CaCl2_10mM_v) CaCl2 10mM" •Legend/C/N=text0/J "\\s('CaCl2_0,1mM_v') CaCl2 0,1mM\r\\s(CaCl2_1mM_v) CaCl2 1mM\r\\s(CaCl2_10mM_v) CaCl2 10mM" •Legend/C/N=text0/J "\\s('CaCl2_0,1mM_v') CaCl2 0.1mM\r\\s(CaCl2_1mM_v) CaCl2 1mM\r\\s(CaCl2_10mM_v) CaCl2 10mM" •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef 'LaCl3_0,001mM_v' /X='LaCl3_0,001mM_gua_conc' /D Fit converged properly 'fit_LaCl3_0,001mM_v'= Michaelis(W_coef,x) W_coef={0.92323,4.3952} V_chisq= 0.00499877;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0535,0.62} Coefficient values ± one standard deviation vmax = 0.92323 ± 0.0535 Km = 4.3952 ± 0.62 •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef 'LaCl3_0,01mM_v' /X='LaCl3_0,01mM_gua_conc' /D Fit converged properly 'fit_LaCl3_0,01mM_v'= Michaelis(W_coef,x) W_coef={1.1644,3.6458} V_chisq= 0.00683332;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0524,0.43} Coefficient values ± one standard deviation vmax = 1.1644 ± 0.0524 Km = 3.6458 ± 0.43 •ModifyGraph rgb('fit_LaCl3_0,01mM_v')=(16385,16388,65535) •Make/D/N=2/O W_coef •W_coef[0] = {1,1} •FuncFit Michaelis W_coef 'LaCl3_0,1mM_v' /X='LaCl3_0,1mM_gua_conc' /D Fit converged properly 'fit_LaCl3_0,1mM_v'= Michaelis(W_coef,x) W_coef={1.1909,3.136} V_chisq= 0.000817193;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0194,0.13} Coefficient values ± one standard deviation vmax = 1.1909 ± 0.0194 Km = 3.136 ± 0.13 •ModifyGraph rgb('fit_LaCl3_0,1mM_v')=(39321,39321,39321) •Legend/C/N=text0/J/F=0/A=MC "\\s('LaCl3_0,001mM_v') LaCl3 0.001mM\r\\s('LaCl3_0,01mM_v') LaCl3 0.01mM\r\\s('LaCl3_0,1mM_v') LaCl3 0.1mM" •Label left "Reakciósebesség (10\\S-9 \\Mmol/dm\\S3\\M)" •Label left "Reakciósebesség (10\\S-9 \\Mmol/dm\\S3\\M)" •Label left "Reakciósebesség (10\\S-9 \\Mmol/dm\\S3\\M)" •Label left "Reakciósebesség (10\\S-9 \\Mmol/dm\\S3\\M)" •Label left "Reakciósebesség (10\\S-9 \\Mmol/dm\\S3\\M)" •ModifyGraph fSize(left)=8;DelayUpdate •Label left "\\Z08Reaction Rate (10−9/s)" •Label bottom "\\Z08Guaiacol Concentration (mM)";DelayUpdate •ModifyGraph fSize=8 •Legend/C/N=text0/J/M "\\Z08\\s(KCl_1mM_v) KCl 1mM\r\\s(KCl_10mM_v) KCl 10mM\r\\s(KCl_100mM_v) KCl 100mM" •Label left "\\Z08Reaction Rate (10−9/s)" •ModifyGraph fSize(left)=8 •Label left "\\Z08Reaction Rate (10−9/s)";DelayUpdate •ModifyGraph fSize(left)=8 •ModifyGraph fSize(left)=8;DelayUpdate •Label left "\\Z08Reaction Rate (10−9/s)" •ModifyGraph fSize(left)=8;DelayUpdate •Label left "\\Z08Reaction Rate (10−9/s)" •ModifyGraph fSize=8;DelayUpdate •Label bottom "\\Z08Guaiacol Concentration (mM)" •ModifyGraph fSize=8;DelayUpdate •Label bottom "\\Z08Guaiacol Concentration (mM)" •ModifyGraph fSize=8;DelayUpdate •Label bottom "\\Z08Guaiacol Concentration (mM)" •ModifyGraph fSize=8;DelayUpdate •Label bottom "\\Z08Guaiacol Concentration (mM)" •Legend/C/N=text0/J/M "\\Z08\\s('CaCl2_0,1mM_v') CaCl2 0.1mM\r\\s(CaCl2_1mM_v) CaCl2 1mM\r\\s(CaCl2_10mM_v) CaCl2 10mM" •Legend/C/N=text0/J/M "\\Z08\\s('LaCl3_0,001mM_v') LaCl3 0.001mM\r\\s('LaCl3_0,01mM_v') LaCl3 0.01mM\r\\s('LaCl3_0,1mM_v') LaCl3 0.1mM" •Legend/C/N=text0/J/M "\\Z08\\s(nacl_1mM_v) NaCl 1mM\r\\s(nacl_10mM_v) NaCl 10mM\r\\s(nacl_100mM_v) NaCl 100mM" •Legend/C/N=text0/J/M "\\Z08\\s(CsCl_1mM_v) CsCl 1mM\r\\s(CsCl_10mM_v) CsCl 10mM\r\\s(CsCl_100mM_v) CsCl 100mM" •ModifyGraph width=77,height=77 •ModifyGraph width=77,height=77 •ModifyGraph width=77,height=77 •ModifyGraph width=95,height=95 •ModifyGraph width=105,height=105 •ModifyGraph width=105,height=105 •ModifyGraph width=105,height=105 •ModifyGraph msize(KCl_100mM_v)=2 •ModifyGraph msize(KCl_10mM_v)=2 •ModifyGraph msize(KCl_1mM_v)=2 •ModifyGraph msize(nacl_1mM_v)=2,msize(nacl_10mM_v)=2,msize(nacl_100mM_v)=2 •ModifyGraph width=105,height=105 •ModifyGraph width=105,height=105 •Label left "\\Z08Reaction Rate (10−9 M/s)" •Label left "\\Z08Reaction Rate (10−9 M/s)" •Label left "\\Z08Reaction Rate (10−9 M/s)" •Label left "\\Z08Reaction Rate (10−9 M/s)" •Label left "\\Z08Reaction Rate (10−9 M/s)" •ModifyGraph msize(CsCl_1mM_v)=2,msize(CsCl_10mM_v)=2,msize(CsCl_100mM_v)=2 •ModifyGraph msize('CaCl2_0,1mM_v')=2,msize(CaCl2_1mM_v)=2,msize(CaCl2_10mM_v)=2 •ModifyGraph msize('LaCl3_0,001mM_v')=2,msize('LaCl3_0,01mM_v')=2,msize('LaCl3_0,1mM_v')=2 •ModifyGraph rgb(KCl_10mM_v)=(12079,16448,21074) •ModifyGraph rgb(KCl_1mM_v)=(65278,51657,22359) •ModifyGraph rgb(KCl_1mM_v)=(59110,12850,15163) •ModifyGraph rgb(fit_KCl_10mM_v)=(12079,16448,21074) •ModifyGraph rgb(fit_KCl_1mM_v)=(59110,12850,15163) •ModifyGraph rgb(fit_nacl_1mM_v)=(59110,12850,15163),rgb(fit_nacl_10mM_v)=(12079,16448,21074),rgb(nacl_1mM_v)=(59110,12850,15163),rgb(nacl_10mM_v)=(12079,16448,21074) •ModifyGraph rgb(fit_CaCl2_1mM_v)=(12079,16448,21074),rgb('fit_CaCl2_0,1mM_v')=(59110,12850,15163),rgb('CaCl2_0,1mM_v')=(59110,12850,15163),rgb(CaCl2_1mM_v)=(12079,16448,21074) •ModifyGraph rgb('fit_LaCl3_0,01mM_v')=(12079,16448,21074),rgb('fit_LaCl3_0,001mM_v')=(59110,12850,15163),rgb('LaCl3_0,001mM_v')=(59110,12850,15163),rgb('LaCl3_0,01mM_v')=(12079,16448,21074) •ModifyGraph rgb(fit_CsCl_10mM_v)=(12079,16448,21074),rgb(fit_CsCl_1mM_v)=(59110,12850,15163),rgb(CsCl_1mM_v)=(59110,12850,15163),rgb(CsCl_10mM_v)=(12079,16448,21074) •ModifyGraph width=110,height=110 •ModifyGraph width=110,height=110 •ModifyGraph width=110,height=110 •ModifyGraph width=110,height=110 •ModifyGraph width=110,height=110 •ModifyGraph margin(left)=30,margin(bottom)=30 •ModifyGraph margin(left)=30,margin(bottom)=30 •ModifyGraph margin(left)=30,margin(bottom)=30 •ModifyGraph margin(left)=30,margin(bottom)=30 •ModifyGraph margin(left)=30,margin(bottom)=30 •ModifyGraph width=115,height=115 •ModifyGraph width=112,height=112 •ModifyGraph width=110 •ModifyGraph height=110 •SetAxis left 0,8 •ModifyGraph width=112,height=112 •ModifyGraph width=112,height=112 •ModifyGraph width=112,height=112 •ModifyGraph width=113,height=113 •ModifyGraph width=113,height=113 •ModifyGraph width=113,height=113 •ModifyGraph width=113,height=113 •ModifyGraph width=113,height=113 •SetAxis bottom 0,12 !k>?_ KCl_1mM_gua_conc????@@@ @$@??(@^_ KCl_1mM_v????FD?ёH?gZ?Ar)?T59?AUr/ߡ?kxЎ?ŋ? _KCl_10mM_gua_conc????@@@ @$@???_KCl_10mM_v????o {?uP?_+Z?7?\Xi?Q3%?=YK?_~y!?1_ KCl_100mM_gua_conc ????@@@ @$@???(@&_ KCl_100mM_v ????\Eba?*|?MK3?t,~?SXi?/N?,|\"?Y;D?m|?P_bcW_coef????^ ?5( @j_Ӡfit_KCl_1mM_v Q7????? ͊?mepz'?Nf8?Xps;?~հ1?A M?lN|?"e? 6JH?еV6&? ӈ?h ? ?*eej?c/?T?7˝9?*r?d>?Ճ.?* YJ?f??1?p%o?'߷?HzX?4?l|_? ??59?d@0R?Kj?M_&O?9u?ը W?2`^?yO?)]h?uExA? $&?}7=? US? 6i?d~?&xH?pu>{? t? 6?s? i?9麵6?\ĩ"$?7?^K?vȱ^?Įaq?CfĄ?V? Б?*{?߰? E?t?q*F?ݷ*?񳢸%'?JV8?my]I?z;Z?kkj?,)Mo{??~(?[o+C?fM8?b?xei?Q_ꗳo?Xv?e|?Ub[x?n#?P>a?R??{Z?q7?\ȿ?M(pߵ??o?k?B3?ݞ<@?~ i`/?_)^?h/6?[?hd7? !X+ ?*r@?zil?ݷ??5?`?J|A?MD;|k?Y?7QT??5?w~?KA.?dA?QCT?y4h?麯z?I̺?=/O?{າ?@?VV?TH?z?s2j ?:[?ؠ4/?֦l`@?+qfQ?IGb?pps?`М?sz?`b?Hp?_Cם?qԇ?`$~P??4H~?pO?/z+"?UR1?;/Z@?!CO?N^?ٺl?Z I{? d)??jlG?Zb?jWb?!\F??4?F4N?zr?c%$?h!? .? H;?< H?cL}U?o@Db?O4n?t®{? ?0s?)IĠ?F? ]"?J/?a&?ґU?PV ?@P?e+??(ၷ ?ĥ.?"?2-?$9?AD?isSO?7SZ?>?e?.p?H8z??`?$rF`2? +?NIY ??wO'? 'f]j'?k0?k){:?[C?tNM?!hV? _?$i?,(?r?BFW{?fit_KCl_10mM_v= Michaelis(W_coef,x) W_coef={1.0252,5.2718} V_chisq= 0.00459983;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.084,0.904} Coefficient values ± one standard deviation vmax = 1.0252 ± 0.084 Km = 5.2718 ± 0.904 Jǀ_fit_KCl_100mM_v Q7?????~B?$B?oΔ?|Tr?+?Q??Bk sf?E1?7 d?n,0?T?Ԛ?*cfm?$!?w4}O?>0qw?>?Wbﷹ?wuS?L?~M1{?1R?Sb?=U?z?Qo?E_??LԮA?'z? Ѳ?+bR?2IG?փrR?n(?u/?yS?je?ƣD?Xq?45?,ZY??7y ?{,E?YOlm?[T?gr?ȧÀ?^{?e?F(?I~`tK?.yQm?ҭȏ?YȠ?oz?C=?(?/r /?NM?Hk?a1_? |d?8?S2?hE`?S^?O[-?:Jq.G?`?"Cy?"`?fhI? ?w?EnJ~?fe(?ҭsx?uIRp3?'I?]^^?MFYs??ts ^?k?6x.?C D?]e??jx g?Wz"?V4?I5F?-42>eX?K&i?4z?ҋ?̕n?Î}?42?7?I?+k΢?l ?-f> ?c8@?b#)?a]7? 'F?fkT?Jb?~tmp?j5݄,~?O?E*?ݩk?5⃳?gAt?y=?i=? V7]?U?Jip?5 ?{8?,z٭"?LRlU.?ă9?pJ@E?0{P?a}p[?d`f?#q?ry_|?υ6 ?e;?=,?RKS\?(?E-:?m Rٲ?5MEљ?Bf?~*q?9?eO3? ??j"?K*3A?]B/J#?Iʌ<,?5?(=?AF?%O?.]W?)J`?Vth?.p?ϝx? F ?Jn?^?@hX?oƠ?=Qz? $4?ZކϷ?{Y? ?}9?GuK?k4?Ia ?4/?.D?^I?>>?z,$? ?=?Rz?fv$"?nkO(?;L/?*؃5?;ޙ?.@?x ?.1N?^E?'izD?p9?qHI1?.ko?k?^}o?I?R1?^Su?')?ZIp?Å?:& ?KfИ??Ol?Ϳ E?Y&?{.VE??E9?]J&v?.A;?e^[w?̇ ?}&?-q%? X]?'`?WZ:?^'?"7?7Bk?ux-?N ?:g]?tTB7?dw?‰?Otz?e+?P?Gi ?{4Q7?>F8I&?D1?&(?#6F#1?Z89?B?pjK?N T?Goٚ\?YPe? Um? u?7~?Rw?D?Ob)Ȗ?Y6ٞ?dvܦ?MϮ?x&i?=&?dR? A ?4bӷ? vU?1N?\g?7?­C? ?r ? D*?8&^?7Ą?fit_nacl_1mM_v= Michaelis(W_coef,x) W_coef={1.6386,4.4665} V_chisq= 0.0181579;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.138,0.863} Coefficient values ± one standard deviation vmax = 1.6386 ± 0.138 Km = 4.4665 ± 0.863 ,[ӫfit_nacl_10mM_v Q7?????1|Zf?Oe?g?u_7?k(b?#?'a~?,?|?y?l5Ⱥ?T6?y8?@GZ?ճa1?vԲ?(.'?k^ ?v8Yf?W])?zx?D<{??_?!`?%Vz?1_;?ܑ?v8?\(9?6:u?Q?%,+?zx?F{??ϖZ?"Eq?IR]?m1?O3gw?s8ʻ?-G?lA?Zg?^?-a?K9@?F~?ҍ(zݺ?c?6Ll1? b{mk?Пћ?d?_?yJ#n`K?.pm?9t?iTWR?˿"2?H^R?bN܄? X?};?KF]?VS6@H?1/w?] /?&/#@?|3ƚ?U.?BoZ?ػȆ?3W ??eCF?`0?͟k Y?6ԝ?_?Ms?ŵ?| ?gߢF?%l?Hy0q:?f=D?wH? #h?W#?c?FG?~OFj? 4?` ?x?" w?YI?j/\4?8T?) +t?i?>(Z?ݷ ?Vڦ??tO?=*?ȤE&?84?)6FjC?җQ?U ,`?`Un?fW[|?=Q?E?Ԁi8? `?. 4|?:?Ɖ(?W3/?f.hj? ȌF?:?fit_nacl_10mM_v= Michaelis(W_coef,x) W_coef={1.714,4.6259} V_chisq= 0.00817355;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.0841,0.561} Coefficient values ± one standard deviation vmax = 1.714 ± 0.0841 Km = 4.6259 ± 0.561 #?[fit_nacl_100mM_vbO?????5p%V?;?`f ??b?Wzo?m@4G?8g.G?t^U?lf?0?*}`U?ɻ?2|?:6i?߈!???}r%?p)R?(;?U?U?Σ@?S_?`%o6?4 I]?QA?qZ:N?oQ?N.j3?{A?%IK?B~"]w?ef? CC?QWO?k?d?E+ )?^ j?<?-q? Pq?kM-?y8Z?؜`?OLe?ڮl?><B?2`O+? ?oHp?Q͝Z?J'?Hpw?7Q~E?n\&M?ˬWT?]w[?Ab?Яi?`K}p?5)aw?I*6~?xɰ?.ٴ?%*^?H?I舟?x[ ?T'nM|?.?|T:?*&?dE?=?Ԋ[?54?fit_nacl_100mM_v= Michaelis(W_coef,x) W_coef={1.8036,3.1589} V_chisq= 0.0197483;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0836,0.42} Coefficient values ± one standard deviation vmax = 1.8036 ± 0.0836 Km = 3.1589 ± 0.42 <[24fit_CsCl_1mM_v?????OԺN%?[?ӱk[?C)my?d8?l@!?f1|٨?ڐ>6?LO^?SFJ?bht?GU?W*8?ξX?\?T?2s?(+#?p_?h>"?Oj? ?= E?T~|?3 ?,DX?|0l?”cL=R?ZNӅ?j ?tu? |e?_~h?g>? $g?*?֎?'?9 ?dR91?{{" X?li~?hQ?+l6?3oP?-b?67?RbL[?䧗~?__d?q*;?\#C?s?Ӂ-*l)?sqJ?ik?Aibg?;$ DZ? ?oʑ7?N+$ ?~'?lF?Skc?7?o6? [0H?$})Z?kk?e/S}?E6?ޜ?a߱?:՟?K?r?۸?l8#?e^L?~&?-!N 7?}4G?&*'W? T#@zY|Z*@ոS1@o;@8@J ?@jBE@'HL@ GItS@ #Z@ckl`@[g@Um@-et@"`;z@t ]A@H5@]$@40r~6@6)r@AIs@UNɦ@g鎘@w@v)@vq@(@le@hE@nJL@{.N@@)c@rt@0߾@fhʲ@>HD@K@kHK @ni3@c/@Bw7@fit_CsCl_1mM_v= Michaelis(W_coef,x) W_coef={2.9658,4.6503} V_chisq= 0.276885;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.462,1.71} Coefficient values ± one standard deviation vmax = 2.9658 ± 0.462 Km = 4.6503 ± 1.71 XT[oqfit_CsCl_10mM_v?????UVy?!b^?1Gn?VM?m?1{5?x-?Ie?WCU?Wx5?+XmrY??;g()?@{ز?x/?cRU?FWx?2qw7?ut?[S:?7X-?DLJ??Bt)8?g?/?F9?-֌?0A?hz 0??@k?15?6y-i?"_?IJ ?VJ?+K?H?=?#@^T4@|W@.ry@0@9@;S@L3<@/X@a:5G?@y`;^@#~@#+ݜ@hW@'˔x@W4A@癴*@O,1@EN@=k@|@,<@]n@ե@\@0@Ktu@")@C@Ձw]@TDw@%2@es1@djK@Be@:Br@n׷ @؆"@G:@Q@&h@Gf@$@mX@A|@ 0i@jK@[*U@ƴ,@Hf.@bDeB@5TW@!l@Lyb@zJ:@ߠl@})@;R@@'@XAL@'OS @-@OR.@r`A@;*S@pe@h)w@Ή@G#쓄@U@y@,ȹ@O@֢q@LΗ@}B@Z#@nݱ+4@fKkD@dPƱT@DO؁d@Zt@0@tj @A@ o@Y}@ Z@)@ @nR=@; @;YT@ӧ(@yk6@@E@ܭo$S@L,a@ļn@A|@N5@Aѵ@a@g@ft@%jO@#2e @z@ @% @c2 @caA> @-AjJ @H1|V @wb @kL]n @,z @ @y` @\} @- @h @\YL @( @S @ @)_: @15 @Ag @Y @Ho @\! @C@, @6 @.(A @b#RKK @1MU @ Z_ @~Q$j @P.}8t @u4:~ @e , @! @M"ݛ @g: @oL @#]K @r!V{ @7 @nR>l @0 @5 @(ha @5_t @F @ @S @}$ @%' @fit_CsCl_10mM_v= Michaelis(W_coef,x) W_coef={4.786,4.9197} V_chisq= 0.67353;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.675,1.55} Coefficient values ± one standard deviation vmax = 4.786 ± 0.675 Km = 4.9197 ± 1.55 |[әfit_CsCl_100mM_v?????6|r&?l ?T7;JE?w5?jyV@Fp[@,K1@@T @֣ t@x@jF@dF@Kg4C@LHc{@hkz@faE@AmX@v݋ @ہm@#@1tc/@:L@_@UʫK@W@@ @ϊ|a @ A @k @ 6p @ @¥l!" @09y @rU0 @|xVO' @| @-ӱ @sj1 & @#޵y @_ @FWKJ@ _"q@]@,@]c@ޒy@@4'@ll3N@pĘ>u@T@\@>8O@p @<1@:95RV@%ǡ{@#@7:@tr%@1BZ @);/@㾱hR@AVu@a[@\z@-إN@a-@n @W\A@|.Ac@:U@E/@Ӽ@_,<@Ĭp@pm&@p\@5F@O5e@DG$@uL@A@#U@+a@@@!=@[@xx@aPUq@fس@@@qP@>I @ b'@4xXD@Vͨo`@o |@0@F!V@)KJ@j@ 0@8Q-!@q <@t *W@)4r@ @O@nO%@N4%@yw'@^h@V9(@A@gxZ@}cs@@E*@txy[@[[@u$f?@]z@74@7@cYO@ g@w'~@P}P@[I@7q@*sHw@ra\@"! @[2@py0I6@ML@b@5.y@6@wp;@: ̺@hd(w@ n\@pq@<y@Ӷ %@' ;@|P@O0d@4:ty@,F@rŝ΢@~e:@b&@s@Iq@k@@nQ/@^9C@QUJV@CoKj@Z:}@#@\_&@HT=@:@X[@}g@熠@r<@d'@ߝ},:@~XfL@O^@0p@iQt@Dn@i̦@~&Y@K@{@s2q@@\?@]!@!2@)ߚC@01T@te@fƩv@I+r@1 &@xŨ@j2P@@k.+@+z@/Z@fit_CsCl_100mM_v= Michaelis(W_coef,x) W_coef={14.461,10.406} V_chisq= 1.60415;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={2.74,3.41} Coefficient values ± one standard deviation vmax = 14.461 ± 2.74 Km = 10.406 ± 3.41 1 [EFfit_CaCl2_0,1mM_v Q7????? wd%?"?ڳVw?(>? )?p\`?E!?cQ?lH]? ?omƳ?ٯ'X?f ?E[?Q3*?A> ?~BK?:UD?id^?X<^?PAb?$<)[?wso:Z?#?;;F?o)Ϸ?|9ݱ&?-!6?2B?#d?(is*?+?х?B?$,mG?4h?;?{=G ?P,?!*!O?q\iq?lA?K,?>x*?"/C=?j?Z۷ 2?)#P?c,m?hƊ?X?iZn?p3 ?so4?]N#?-0/?G I?htEyb? Fw{?T"?>a?, ,??Ze?DV ?Oh8 ?[ ?T4[96?VL?q\ua?XѲv?cDIo?G?4?^(?̊?8?؂JW?2?'?#:?Iwgo?,X&?ZN:?s&?!pڳ?iW?DP"?M?X:?w5?LE?PsL"?}t2?@?,SO?^m/^?zyl?2z?z4?*~Q?oL?޼PԱ?TT`Z3?}j?{?-e?NQ)?>?#OlC ?:v?i? <}d?eP?Xq?"=?P?I?W?)?cS'?Ls?iF1?`%?;/?.I|`8?cA?ߐѱJ?VS?aB\?ĸe?B]Xn? w?S?a32? ?.)& ?.V?kr?ܤz-?Nʹ?5C?̺?S?"a?A?NJA?nwX?ˌ?kR?lpV?{ ?VL?Q? #?c >*?8B1?۲8?E ??NqF?A-W(;M? l;S?drZ?u{Aa?lxgg?&"Vn?t?=F:4{?a-Ac? ݇?+?Ry7S? 5{?z?sť?zVϨ?Hq.؟?6;?'fit_CaCl2_0,1mM_v'= Michaelis(W_coef,x) W_coef={0.95781,2.8782} V_chisq= 0.00567956;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.0453,0.412} Coefficient values ± one standard deviation vmax = 0.95781 ± 0.0453 Km = 2.8782 ± 0.412 \[kmfit_CaCl2_1mM_v Q7?????C3 ?ro? ?5 ?nJ?J>??| ?S?ʐ;d<?q uC?-,,M{? ˌ)?32?Mjmx?jlh?ŋTL?,i}AO?cl?]u? 2?=h??M}?MY<?-n?m2Rb?*Yd?GhV?Zv?^ :?3oV?D?? ?2?/`| ?}K/?g>?=;XM?="[?nj?Jbx?J.?E d?X?*PUp???ϱ"h?!t?1 ? c? l?ngh ?F?!dA|%?K;1?7f>?*>(J?9#V?_Ma?#mm?<_y??!J??E#lŦ?)Mٱ?z%Ҽ?` V??t?WA?@ ~?%?q?$Ve?<1?C+?rx %?d.?'!a8?VA~B?!,!L?*YU?4'_?*h?q?AN?<=;\?BY ?);E?C!?N߽#?c{m+?vST3?nUY:?D}B?VS&I?iQ?tX?0>w`?\g?r?=n?(u?|?؃?fit_CaCl2_1mM_v= Michaelis(W_coef,x) W_coef={1.0839,3.127} V_chisq= 0.00292349;V_npnts= 8;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 7; W_sigma={0.0348,0.294} Coefficient values ± one standard deviation vmax = 1.0839 ± 0.0348 Km = 3.127 ± 0.294 D[ӯfit_CaCl2_10mM_v֪x?????>]q?& j5E?wru?5?ٶ:?-VD?(h?O֬?f힝?Sp?ڿ?2?#*k=?U] !?E)?R?dr?;aum?Î0?B"?+)?Q[?/ ?f6@ ?<@Z?櫟h"?#rX?ju2??2PY?C?Vv 4r?SZ~?qk}?t ?|?]8?&RQ8?Rr?gPa?I"?=m?aQ?trƧM?n?k|?zJ&?XN?l ~?꤬?P??3?`^?;@0SW?{Iͱ?~?upqo?e`)?ߋ%P?Uu?V?Ѓ?i^k?G3?~;-C)?S@KK?𽹿l?Gj̤?o ?俒?B?c ?E%0*?G?L\Ve?k[8?G?Ҥ?^3?WW?La/ ?ľh&?pX@?֍ɛ??|?`?0#=?$A)t?On?1oJ?+m '?@U:?Cɲ?|??۹g? 򃽸?,S?k?c-?/G ? Q-?I7:?A F?TМS?*`?|c|l?1Tx?>.ڄ?Ifnfڐ?}?}>W}?JՇ!?8I!?] ?6Q^?U?eN?I`?T]z?My= ?̬?u"?40,?ǤwG7? A?iѵK?$U?т_?i? 3ss?b-(}?wmrdž?Ԝr P?+™?0?Oy7bg?I?Jdd??c?wAm ?\Wd?jǧ*??ﺉgX?>ON?@G ?W[ߣ?j?JS&&?M.?1 yb6?f>?i ZF?EIݦ+??$9?bB?&E?!C?_.dz?APo?Qd?L-6?*+i's?K4?=@?&?g4&_?`??ī?W>?xt?I?%?Xu?OXD?v?d?m w?UpU ?\' 9?qh?&Cak?Eb?G?G?yڗ?e+K?P|ޕw?/{Ƣ?|:p?U)]? 8?/1%?Ԓ9?jM?wwa?]<u?b#}?/?d=e?CZ?n]?*r*2?7{O?d8 ?-*?$1عs-?`V1>?#O`O?oı `?֍q?Ɂ"9?p?Z?,?jb?~!?y)&?Q`8ގ?w&#?ѥ?pI&?-?BG?(O?e* ?<|Ν?$aڦ?@Jү?Z?gt? Q?Bb?FW?~4?V"?!!?#~?p?y ?ݡ7?n\QU?c&?B4c.?qR6?Οr3>?{F?j)M?{}U?Bn$]?&d? WFl?B*s? Ƶ1{?@[?!?YPK,? !#Ie? $>?'fit_LaCl3_0,001mM_v'= Michaelis(W_coef,x) W_coef={0.92323,4.3952} V_chisq= 0.00499877;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0535,0.62} Coefficient values ± one standard deviation vmax = 0.92323 ± 0.0535 Km = 4.3952 ± 0.62   \BEfit_LaCl3_0,01mM_v Q7?????5?1-?.?wޣ0?wF?r?+޻u^?\S?tj?R'?Mk?΄Xz?3]5qb?C?@@P?/;?Q`{(4?q?f?>z?p?/PI?,j쀮?c@@?BRh9?U`-i?0?Á#9?UP0?| ?\NK?v???Y?i5%u?l*?YԪ?#?$?ջ?4?Y'+?{6C?Z[? [t?0 Ë?(3?mC|Y?6? ~?[?Ė%?)? 7q??jT?[?G`?4G?N>N5?U???nD?k2l)?Y|4?Qt??ֹTJ?QV=U?N_?;hj?gt?=Y? \8?y?/n?95?Y46?F#???.@X(p?m ?Й+'?6B ?2cl?Z?/t-?j#?+;$?mA-?BAa66?84??sG?h|P?8-ZY?өya?ⅆj?~s?C/q{?РoX΃?kW?=.6Y?'fit_LaCl3_0,01mM_v'= Michaelis(W_coef,x) W_coef={1.1644,3.6458} V_chisq= 0.00683332;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0524,0.43} Coefficient values ± one standard deviation vmax = 1.1644 ± 0.0524 Km = 3.6458 ± 0.43 o=\bcfit_LaCl3_0,1mM_v֪x?????'H]ע?:F ʫ?zba]? ? g?vXa?/?,&q?ʇQC?當?\r?[9U?a?i!?>خC?4,D1?{/?滷77?dN4ߵ?M‡1?B?"?7?< ?U({?ב? U?H˰B?dߢS?XG?y?^DS?O?@ߓ ?r:?ջ'&h?$ɕ?f CL?d4? C?iC?ց m?aa?GގH??%# ?Y3?0'Y?&8_~?ff?+Dg?j|?KΥ ? wl!0? ;NR?2 Vs?P?_l?l;9?wi??܃2?tP?#qwn??% ??9[?,?g X?pd{4?gVBO?`i?Ń?͈[?r?,o?Ù?OoF?ߪo?ҬOK1?l,vH?Z+#`?r}:!w?Ć7׍?nH?s!t?F\??+ {g?$?>qr%?*aw{:?;8N? Mb?@%v?uxmFe??D2?9F?i#?yş?})A?ԃG? ?-em2?vD?U?&tf?V5x? iF?7ݳ?XgJ?,?h;?  ?ځ?o׷?,Q ?n?wo )?f18?A/G?}7V?Qd?q<{Hs?ܲ?aS?\<?b'?zm?t?|Y?.