4Misc_Start<#4Platform@Q9VersionCheck xHH@Rg(HHdh xHH@Rg(HHdh x HH@Rg(HHdh ^Graph*0;WDashSettings#  !4 4 4 4 4 4 homedC:Users:biocolloids:Documents:Tomi:17_PB_Hofmeister_activity:PB_Hofmeister_activity_Figures_work:RecentWindowsKHM_EMHM_EMHM_wHM_wSH_EMSH_EMSH_wSH_wWaveSelectorWidgetWMMenus.ipf 4Misc_End<#4XOPState_Start<#4XOPState_End<#@;RY>?çAV_Flag?V_chisq~ܵ?V_numNaNsV_numINFsV_npnts"@V_nterms@V_nheldV_startRowV_endRow @V_startColV_endColV_startLayerV_endLayerV_startChunkV_endChunkS_waveNameswave1;S_pathamesS_fileName Clipboard•Edit as "HM_EM" •Rename wave0,EM_NaCl_Conc_mM; Rename wave1,EM_NaCl; Rename wave2,EM_NaCl_STDEV •Rename wave0,EM_KCl_Conc_mM; Rename wave1,EM_KCl; Rename wave2,EM_KCl_STDEV •Rename wave0,EM_CsCl_Conc_mM; Rename wave1,EM_CsCl; Rename wave2,EM_CsCl_STDEV •Display EM_NaCl vs EM_NaCl_Conc_mM as "HM_EM" •ModifyGraph mode=3,marker=19,msize=3,useMrkStrokeRGB=1;DelayUpdate •ErrorBars EM_NaCl Y,wave=(EM_NaCl_STDEV,EM_NaCl_STDEV) •ModifyGraph btLen=3 •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •ModifyGraph mirror=2 •SetAxis left -3,0 •ModifyGraph log(bottom)=1 •Label left "\\Z10Electrophoretic Mobility (10\\S-8\\Mm\\S2\\MV\\S-1\\Ms\\S-1\\M)" •Label bottom "Salt Concentration (mM)" •Legend/C/N=text0/J/F=0/A=MC "\\s(EM_NaCl)NaCl" •SetAxis bottom 0.3,3000 •AppendToGraph EM_KCl vs EM_KCl_Conc_mM •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(EM_KCl)=16,rgb(EM_KCl)=(16385,28398,65535);DelayUpdate •ErrorBars EM_KCl Y,wave=(EM_KCl_STDEV,EM_KCl_STDEV) •Edit as "SH_EM" •Rename wave0,EM_CaCl2_Conc_mM; Rename wave1,EM_CaCl2; Rename wave2,EM_CaCl2_STDEV •AppendToGraph EM_CsCl vs EM_CsCl_Conc_mM •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(EM_CsCl)=16,rgb(EM_CsCl)=(43690,43690,43690);DelayUpdate •ErrorBars EM_CsCl Y,wave=(EM_CsCl_STDEV,EM_CsCl_STDEV) •Legend/C/N=text0/J "\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl" •Rename wave0,EM_LaCl3_Conc_mM; Rename wave1,EM_LaCl3; Rename wave2,EM_LaCl3_STDEV •Display EM_KCl vs EM_KCl_Conc_mM as "SH_EM" •ModifyGraph mode=3,marker=16,msize=3,rgb=(16385,28398,65535),useMrkStrokeRGB=1;DelayUpdate •ErrorBars EM_KCl Y,wave=(EM_KCl_STDEV,EM_KCl_STDEV) •ModifyGraph log(bottom)=1 •ModifyGraph mirror=2,btLen=3;DelayUpdate •SetAxis left -3,2 •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •Label left "\\Z10Electrophoretic Mobility (10\\S-8\\Mm\\S2\\MV\\S-1\\Ms\\S-1\\M)" •Label bottom "Salt Concentration (mM)" •SetAxis/A •Legend/C/N=text0/J/F=0/A=MC "\\s(EM_KCl)KCl" •AppendToGraph EM_CaCl2 vs EM_CaCl2_Conc_mM •ModifyGraph marker(EM_CsCl)=17 •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(EM_CaCl2)=19;DelayUpdate •ErrorBars EM_CaCl2 Y,wave=(EM_CaCl2_STDEV,EM_CaCl2_STDEV) •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2" •SetAxis left -2,1 •AppendToGraph EM_LaCl3 vs EM_LaCl3_Conc_mM •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(EM_LaCl3)=17,rgb(EM_LaCl3)=(48059,48059,48059);DelayUpdate •ErrorBars EM_LaCl3 Y,wave=(EM_LaCl3_STDEV,EM_LaCl3_STDEV) •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3" •Edit as "HM_w" •Rename wave0,w_KCl_Conc_mM; Rename wave1,w_KCl •Rename wave0,w_NaCl_Conc_mM; Rename wave1,w_NaCl •Rename wave0,w_CsCl_Conc_mM; Rename wave1,w_CsCl •Display w_KCl vs w_KCl_Conc_mM as "HM_w" •SetAxis bottom 0.3,3000 •ModifyGraph log(bottom)=1 •ModifyGraph log=1;DelayUpdate •SetAxis left 0.5,5000 •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •Label bottom "Salt Concentration (mM)" •Label left "Stability Ratio" •ModifyGraph mirror=2,btLen=3 •ModifyGraph mode=3,marker=19,msize=3,useMrkStrokeRGB=1 •Legend/C/N=text0/J/F=0/A=MC "\\s(w_KCl)KCl" •AppendToGraph w_NaCl vs w_NaCl_Conc_mM •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(w_NaCl)=16,rgb(w_NaCl)=(16385,28398,65535) •ModifyGraph marker=19,rgb(w_NaCl)=(65535,16385,16385) •ModifyGraph marker(w_KCl)=16,rgb(w_KCl)=(16385,28398,65535) •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_NaCl)NaCl" •AppendToGraph w_CsCl vs w_CsCl_Conc_mM •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(w_CsCl)=17,rgb(w_CsCl)=(48059,48059,48059) •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_NaCl)NaCl\r\\s(w_CsCl)CsCl" •Edit as "SH_w" •Rename wave0,w_CaCl2_Conc_mM; Rename wave1,w_CaCl2 •Rename wave0,w_LaCl3_Conc_mM; Rename wave1,w_LaCl3 •Display w_KCl vs w_KCl_Conc_mM as "SH_w" •ModifyGraph margin(left)=44,margin(bottom)=44,margin(right)=5,margin(top)=5,width=185,height=185 •ModifyGraph mirror=2,btLen=3 •ModifyGraph log=1 •SetAxis left 0.8,1200 •SetAxis bottom 0.0008,1300 •Label bottom "\\Z10Salt Concentration (mM)" •Label left "\\Z10Stability ratio" •Legend/C/N=text0/J/F=0/A=MC "\\s(w_KCl)KCl" •ModifyGraph mode=3,marker=16,msize=3,rgb=(16385,28398,65535),useMrkStrokeRGB=1 •AppendToGraph w_CaCl2 vs w_CaCl2_Conc_mM •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(w_CaCl2)=19 •AppendToGraph w_LaCl3 vs w_LaCl3_Conc_mM •ModifyGraph mode=3,msize=3,useMrkStrokeRGB=1,marker(w_LaCl3)=17,rgb(w_LaCl3)=(48059,48059,48059) •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3" •Make/D/N=4/O W_coef •W_coef[0] = {100,-1.85,1,1} •FuncFit/H="0111" CCC W_coef w_KCl /X=w_KCl_Conc_mM /D Fit converged properly fit_w_KCl= CCC(W_coef,fitX_w_KCl[p]) W_coef={77.41,-1.85,1,1} V_chisq= 11262.3;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={0.47,0,0,0} Coefficient values ± one standard deviation CCC = 77.41 ± 0.47 Beta = -1.85 ± 0 a = 1 ± 0 z = 1 ± 0 •ModifyGraph rgb(fit_w_KCl)=(16385,16388,65535) •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3\r" •Make/D/N=4/O W_coef •W_coef[0] = {100,-1.85,1,1} •FuncFit/H="0111" CCC W_coef w_KCl /X=w_KCl_Conc_mM /D Fit converged properly fit_w_KCl= CCC(W_coef,fitX_w_KCl[p]) W_coef={77.41,-1.85,1,1} V_chisq= 11262.3;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={0.47,0,0,0} Coefficient values ± one standard deviation CCC = 77.41 ± 0.47 Beta = -1.85 ± 0 a = 1 ± 0 z = 1 ± 0 •ModifyGraph rgb(fit_w_KCl)=(16385,28398,65535) •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_NaCl)NaCl\r\\s(w_CsCl)CsCl\r" •Make/D/N=4/O W_coef •W_coef[0] = {100,-1.72,1,1} •FuncFit/H="0111" CCC W_coef w_NaCl /X=w_NaCl_Conc_mM /D Fit converged properly fit_w_NaCl= CCC(W_coef,fitX_w_NaCl[p]) W_coef={117.85,-1.72,1,1} V_chisq= 80892.1;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={1.76,0,0,0} Coefficient values ± one standard deviation CCC = 117.85 ± 1.76 Beta = -1.72 ± 0 a = 1 ± 0 z = 1 ± 0 •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_NaCl)NaCl\r\\s(w_CsCl)CsCl\r" •Make/D/N=4/O W_coef •W_coef[0] = {100,-1.76,1,1} •FuncFit/H="0111" CCC W_coef w_CsCl /X=w_CsCl_Conc_mM /D Fit converged properly fit_w_CsCl= CCC(W_coef,fitX_w_CsCl[p]) W_coef={33.578,-1.76,1,1} V_chisq= 1542.32;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={0.146,0,0,0} Coefficient values ± one standard deviation CCC = 33.578 ± 0.146 Beta = -1.76 ± 0 a = 1 ± 0 z = 1 ± 0 •ModifyGraph rgb(fit_w_CsCl)=(43690,43690,43690) •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_NaCl)NaCl\r\\s(w_CsCl)CsCl\r" •ModifyGraph rgb(w_NaCl)=(65535,0,0) •Make/D/N=4/O W_coef •W_coef[0] = {100,-0.94,2,2} •FuncFit/H="0111" CCC W_coef w_CaCl2 /X=w_CaCl2_Conc_mM /D Fit converged properly fit_w_CaCl2= CCC(W_coef,fitX_w_CaCl2[p]) W_coef={37.555,-0.94,2,2} V_chisq= 20.0837;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 10; W_sigma={0.566,0,0,0} Coefficient values ± one standard deviation CCC = 37.555 ± 0.566 Beta = -0.94 ± 0 a = 2 ± 0 z = 2 ± 0 •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3\r" •Make/D/N=4/O W_coef •W_coef[0] = {100,-0.86,3,3} •FuncFit/H="0111" CCC W_coef w_LaCl3 /X=w_LaCl3_Conc_mM /D Fit converged properly fit_w_LaCl3= CCC(W_coef,fitX_w_LaCl3[p]) W_coef={1.5483,-0.86,3,3} V_chisq= 10.0032;V_npnts= 15;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 14; W_sigma={0.0118,0,0,0} Coefficient values ± one standard deviation CCC = 1.5483 ± 0.0118 Beta = -0.86 ± 0 a = 3 ± 0 z = 3 ± 0 •ModifyGraph rgb(fit_w_LaCl3)=(43690,43690,43690) •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3\r" •DeletePoints 0,3, EM_NaCl_Conc_mM,EM_NaCl,EM_NaCl_STDEV,EM_KCl_Conc_mM,EM_KCl,EM_KCl_STDEV,EM_CsCl_Conc_mM,EM_CsCl,EM_CsCl_STDEV •DeletePoints 6,1, EM_CsCl_Conc_mM,EM_CsCl,EM_CsCl_STDEV •Make/D/N=10/O W_coef •W_coef[0] = {-0.002,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/H="0111111111" sigma W_coef EM_NaCl /X=EM_NaCl_Conc_mM /D Fit converged properly fit_EM_NaCl= sigma(W_coef,fitX_EM_NaCl[p]) W_coef={-0.0066853,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0.0104699;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.000165,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0066853 ± 0.000165 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 1 ± 0 z = 1 ± 0 •Legend/C/N=text0/J "\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl\r" •Make/D/N=10/O W_coef •W_coef[0] = {-0.002,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/H="0111111111" sigma W_coef EM_KCl /X=EM_KCl_Conc_mM /D Fit converged properly fit_EM_KCl= sigma(W_coef,fitX_EM_KCl[p]) W_coef={-0.0047568,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0.00390487;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.000101,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0047568 ± 0.000101 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 1 ± 0 z = 1 ± 0 •ModifyGraph rgb(fit_EM_KCl)=(16385,16388,65535) •Make/D/N=10/O W_coef •W_coef[0] = {-0.002,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/H="0111111111" sigma W_coef EM_CsCl /X=EM_CsCl_Conc_mM /D Fit converged properly fit_EM_CsCl= sigma(W_coef,fitX_EM_CsCl[p]) W_coef={-0.0026785,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0.0283556;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.000271,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0026785 ± 0.000271 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 1 ± 0 z = 1 ± 0 •ModifyGraph rgb(fit_EM_CsCl)=(43690,43690,43690) •Legend/C/N=text0/J "\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl" •ErrorBars EM_KCl Y,wave=(EM_KCl_STDEV,EM_KCl_STDEV) •DeletePoints 10,1, EM_CsCl_STDEV •DeletePoints 8,4, EM_CaCl2_Conc_mM,EM_CaCl2,EM_CaCl2_STDEV •DeletePoints 0,2, EM_CaCl2_Conc_mM,EM_CaCl2 •Make/D/N=10/O W_coef •W_coef[0] = {-0.005,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {2,2} •FuncFit/H="0111111111" sigma W_coef EM_CaCl2 /X=EM_CaCl2_Conc_mM /D Fit converged properly fit_EM_CaCl2= sigma(W_coef,fitX_EM_CaCl2[p]) W_coef={-0.0013936,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,2,2} V_chisq= 0.0383549;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.000115,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0013936 ± 0.000115 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 2 ± 0 z = 2 ± 0 •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3\r" •DeletePoints 12,1, EM_CaCl2 •DeletePoints 6,2, EM_CaCl2_STDEV •DeletePoints 0,12, EM_CaCl2_STDEV •DeletePoints 0,3, EM_LaCl3_Conc_mM,EM_LaCl3,EM_LaCl3_STDEV •DeletePoints 3,8, EM_LaCl3_Conc_mM,EM_LaCl3,EM_LaCl3_STDEV •Make/D/N=10/O W_coef •W_coef[0] = {-0.0002,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {3,3} •FuncFit/H="0111111111" sigma W_coef EM_LaCl3 /X=EM_LaCl3_Conc_mM /D Fit converged properly fit_EM_LaCl3= sigma(W_coef,fitX_EM_LaCl3[p]) W_coef={-0.00038192,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,3,3} V_chisq= 0.023853;V_npnts= 3;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 2; W_sigma={3.62e-05,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.00038192 ± 3.62e-05 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 3 ± 0 z = 3 ± 0 •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3\r" •ModifyGraph rgb(fit_EM_LaCl3)=(43690,43690,43690) •DeletePoints 6,3, EM_KCl_Conc_mM,EM_KCl,EM_KCl_STDEV •Make/D/N=10/O W_coef •W_coef[0] = {-0.0002,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/H="0111111111" sigma W_coef EM_KCl /X=EM_KCl_Conc_mM /D Fit converged properly fit_EM_KCl= sigma(W_coef,fitX_EM_KCl[p]) W_coef={-0.0047568,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0.00390487;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.000101,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0047568 ± 0.000101 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 1 ± 0 z = 1 ± 0 •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3\r" •ModifyGraph rgb(fit_EM_KCl)=(16385,16388,65535) •RemoveFromGraph fit_EM_NaCl •RemoveFromGraph fit_EM_KCl •RemoveFromGraph fit_EM_CsCl •RemoveFromGraph fit_EM_CaCl2 •RemoveFromGraph fit_EM_KCl •RemoveFromGraph fit_EM_LaCl3 •DeletePoints 6,3, EM_NaCl,EM_NaCl_STDEV,EM_KCl_Conc_mM,EM_KCl,EM_KCl_STDEV,EM_CsCl_Conc_mM,EM_CsCl,EM_CsCl_STDEV •DeletePoints 6,1, EM_CsCl_Conc_mM,EM_CsCl,EM_CsCl_STDEV •DeletePoints 6,3, EM_NaCl_Conc_mM •Make/D/N=10/O W_coef •W_coef[0] = {-0.001,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/H="0111111111" sigma W_coef EM_NaCl[1,1000] /X=EM_NaCl_Conc_mM /D Fit converged properly Curve fit with data subrange: EM_NaCl[1,*] fit_EM_NaCl= sigma(W_coef,fitX_EM_NaCl[p]) W_coef={-0.0066005,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0.00992626;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1;V_endRow= 5; W_sigma={0.000255,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0066005 ± 0.000255 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 1 ± 0 z = 1 ± 0 •RemoveFromGraph fit_EM_NaCl •Make/D/N=10/O W_coef •W_coef[0] = {-0.001,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/X=1/H="0111111111" sigma W_coef EM_NaCl[1,1000] /X=EM_NaCl_Conc_mM /D Fit converged properly Curve fit with data subrange: EM_NaCl[1,*] fit_EM_NaCl= sigma(W_coef,fitX_EM_NaCl[p]) W_coef={-0.0066005,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0.00992626;V_npnts= 5;V_numNaNs= 0;V_numINFs= 0; V_startRow= 1;V_endRow= 5; W_sigma={0.000255,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0066005 ± 0.000255 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 1 ± 0 z = 1 ± 0 •RemoveFromGraph fit_EM_NaCl •Make/D/N=10/O W_coef •W_coef[0] = {-0.001,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/X=1/H="0111111111" sigma W_coef EM_NaCl[0,0] /X=EM_NaCl_Conc_mM /D 9 iterations with no decrease in chi square Curve fit with data subrange: EM_NaCl[0,0] fit_EM_NaCl= sigma(W_coef,fitX_EM_NaCl[p]) W_coef={-0.0067685,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0;V_npnts= 1;V_numNaNs= 0;V_numINFs= 0;V_startRow= 0; V_endRow= 0; W_sigma={NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN} Coefficient values ± one standard deviation sigma = -0.0067685 ± NaN eps0 = 8.85e-12 ± NaN eps = 78.5 ± NaN kb = 1.3805e-23 ± NaN T = 298.2 ± NaN e = 1.6022e-19 ± NaN Na = 6.0221e+23 ± NaN eta = 0.00089031 ± NaN a = 1 ± NaN z = 1 ± NaN •Legend/C/N=text0/J "\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl\r" •Make/D/N=10/O W_coef •W_coef[0] = {-0.001,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/X=1/H="0111111111" sigma W_coef EM_KCl[0,0] /X=EM_KCl_Conc_mM /D 9 iterations with no decrease in chi square Curve fit with data subrange: EM_KCl[0,0] fit_EM_KCl= sigma(W_coef,fitX_EM_KCl[p]) W_coef={-0.004819,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0;V_npnts= 1;V_numNaNs= 0;V_numINFs= 0;V_startRow= 0; V_endRow= 0; W_sigma={NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN} Coefficient values ± one standard deviation sigma = -0.004819 ± NaN eps0 = 8.85e-12 ± NaN eps = 78.5 ± NaN kb = 1.3805e-23 ± NaN T = 298.2 ± NaN e = 1.6022e-19 ± NaN Na = 6.0221e+23 ± NaN eta = 0.00089031 ± NaN a = 1 ± NaN z = 1 ± NaN •ModifyGraph rgb(fit_EM_KCl)=(16385,16388,65535) •Legend/C/N=text0/J "\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl\r" •Make/D/N=10/O W_coef •W_coef[0] = {-0.001,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/X=1/H="0111111111" sigma W_coef EM_CsCl[0,0] /X=EM_CsCl_Conc_mM /D 9 iterations with no decrease in chi square Curve fit with data subrange: EM_CsCl[0,0] fit_EM_CsCl= sigma(W_coef,fitX_EM_CsCl[p]) W_coef={-0.0022864,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 3.08149e-33;V_npnts= 1;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 0; W_sigma={inf,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN} Coefficient values ± one standard deviation sigma = -0.0022864 ± inf eps0 = 8.85e-12 ± NaN eps = 78.5 ± NaN kb = 1.3805e-23 ± NaN T = 298.2 ± NaN e = 1.6022e-19 ± NaN Na = 6.0221e+23 ± NaN eta = 0.00089031 ± NaN a = 1 ± NaN z = 1 ± NaN •RemoveFromGraph fit_EM_CsCl •Make/D/N=10/O W_coef •W_coef[0] = {-0.001,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/X=1/H="0111111111" sigma W_coef EM_CsCl[0,0] /X=EM_CsCl_Conc_mM /D 9 iterations with no decrease in chi square Curve fit with data subrange: EM_CsCl[0,0] fit_EM_CsCl= sigma(W_coef,fitX_EM_CsCl[p]) W_coef={-0.0022864,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 3.08149e-33;V_npnts= 1;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 0; W_sigma={inf,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN} Coefficient values ± one standard deviation sigma = -0.0022864 ± inf eps0 = 8.85e-12 ± NaN eps = 78.5 ± NaN kb = 1.3805e-23 ± NaN T = 298.2 ± NaN e = 1.6022e-19 ± NaN Na = 6.0221e+23 ± NaN eta = 0.00089031 ± NaN a = 1 ± NaN z = 1 ± NaN •ModifyGraph rgb(fit_EM_CsCl)=(43690,43690,43690) •Legend/C/N=text0/J "\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl\r" •Legend/C/N=text0/J "\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl" •SetAxis bottom 0.3,3000 •DeletePoints 6,3, EM_KCl_Conc_mM,EM_KCl,EM_KCl_STDEV •Make/D/N=10/O W_coef •W_coef[0] = {-0.001,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {1,1} •FuncFit/X=1/H="0111111111" sigma W_coef EM_KCl[0,0] /X=EM_KCl_Conc_mM /D 9 iterations with no decrease in chi square Curve fit with data subrange: EM_KCl[0,0] fit_EM_KCl= sigma(W_coef,fitX_EM_KCl[p]) W_coef={-0.004819,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,1,1} V_chisq= 0;V_npnts= 1;V_numNaNs= 0;V_numINFs= 0;V_startRow= 0; V_endRow= 0; W_sigma={NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN,NaN} Coefficient values ± one standard deviation sigma = -0.004819 ± NaN eps0 = 8.85e-12 ± NaN eps = 78.5 ± NaN kb = 1.3805e-23 ± NaN T = 298.2 ± NaN e = 1.6022e-19 ± NaN Na = 6.0221e+23 ± NaN eta = 0.00089031 ± NaN a = 1 ± NaN z = 1 ± NaN •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3\r" •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3" •ModifyGraph rgb(fit_EM_KCl)=(16385,16388,65535) •SetAxis bottom 0.001,3000 •SetAxis bottom 0.001,1000 •DeletePoints 6,6, EM_CaCl2_Conc_mM,EM_CaCl2,EM_CaCl2_STDEV •Make/D/N=10/O W_coef •W_coef[0] = {-0.0014,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {2,2} •FuncFit/H="0111111111" sigma W_coef EM_CaCl2 /X=EM_CaCl2_Conc_mM /D Fit converged properly fit_EM_CaCl2= sigma(W_coef,fitX_EM_CaCl2[p]) W_coef={-0.0013936,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,2,2} V_chisq= 0.0383549;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.000115,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0013936 ± 0.000115 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 2 ± 0 z = 2 ± 0 •RemoveFromGraph fit_EM_CaCl2 •Make/D/N=10/O W_coef •W_coef[0] = {-0.0014,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {2,2} •FuncFit/X=1/H="0111111111" sigma W_coef EM_CaCl2 /X=EM_CaCl2_Conc_mM /D Fit converged properly fit_EM_CaCl2= sigma(W_coef,fitX_EM_CaCl2[p]) W_coef={-0.0013936,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,2,2} V_chisq= 0.0383549;V_npnts= 6;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 5; W_sigma={0.000115,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.0013936 ± 0.000115 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 2 ± 0 z = 2 ± 0 •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3" •DeletePoints 3,11, EM_LaCl3_Conc_mM,EM_LaCl3,EM_LaCl3_STDEV •Make/D/N=10/O W_coef •W_coef[0] = {-0.0014,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {2,2} •FuncFit/X=1/H="0111111111" sigma W_coef EM_LaCl3 /X=EM_LaCl3_Conc_mM /D Fit converged properly fit_EM_LaCl3= sigma(W_coef,fitX_EM_LaCl3[p]) W_coef={-0.00027006,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,2,2} V_chisq= 0.023853;V_npnts= 3;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 2; W_sigma={2.56e-05,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.00027006 ± 2.56e-05 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 2 ± 0 z = 2 ± 0 •RemoveFromGraph fit_EM_LaCl3 •Make/D/N=10/O W_coef •W_coef[0] = {-0.0014,8.85E-12,78.5,1.38054E-23,298.2,1.602192E-19,6.02214179E+23,0.000890308298415744} •W_coef[8] = {3,3} •FuncFit/X=1/H="0111111111" sigma W_coef EM_LaCl3 /X=EM_LaCl3_Conc_mM /D Fit converged properly fit_EM_LaCl3= sigma(W_coef,fitX_EM_LaCl3[p]) W_coef={-0.00038192,8.85e-12,78.5,1.3805e-23,298.2,1.6022e-19,6.0221e+23,0.00089031,3,3} V_chisq= 0.023853;V_npnts= 3;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 2; W_sigma={3.62e-05,0,0,0,0,0,0,0,0,0} Coefficient values ± one standard deviation sigma = -0.00038192 ± 3.62e-05 eps0 = 8.85e-12 ± 0 eps = 78.5 ± 0 kb = 1.3805e-23 ± 0 T = 298.2 ± 0 e = 1.6022e-19 ± 0 Na = 6.0221e+23 ± 0 eta = 0.00089031 ± 0 a = 3 ± 0 z = 3 ± 0 •Legend/C/N=text0/J "\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3" •ModifyGraph rgb(fit_EM_LaCl3)=(48059,48059,48059) •Label bottom "Só koncentráció (mM)" •Label bottom "Só koncentráció (mM)" •Label bottom "Só koncentráció (mM)" •Label bottom "\\Z10Só koncentráció (mM)" •Label left "\\Z10Elektroforetikus mobilitás (10\\S-8\\Mm\\S2\\MV\\S-1\\Ms\\S-1\\M)" •Label left "\\Z10Elektroforetikus mobilitás (10\\S-8\\Mm\\S2\\MV\\S-1\\Ms\\S-1\\M)" •Label left "Stabilitási arány" •Label left "\\Z10Stabilitási arány" •RemoveFromGraph fit_w_CaCl2 •DeletePoints 11,10, w_CaCl2 •Make/D/N=4/O W_coef •W_coef[0] = {15,-1.05,2,2} •FuncFit/H="0111" CCC W_coef w_CaCl2 /X=w_CaCl2_Conc_mM /D Fit converged properly fit_w_CaCl2= CCC(W_coef,fitX_w_CaCl2[p]) W_coef={22.258,-1.05,2,2} V_chisq= 0.979913;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 10; W_sigma={0.0685,0,0,0} Coefficient values ± one standard deviation CCC = 22.258 ± 0.0685 Beta = -1.05 ± 0 a = 2 ± 0 z = 2 ± 0 •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3" •RemoveFromGraph fit_w_CaCl2 •DeletePoints 11,10, w_CaCl2 •Make/D/N=4/O W_coef •W_coef[0] = {10,-1.21,2,2} •FuncFit/H="0111" CCC W_coef w_CaCl2 /X=w_CaCl2_Conc_mM /D Fit converged properly fit_w_CaCl2= CCC(W_coef,fitX_w_CaCl2[p]) W_coef={12.615,-1.21,2,2} V_chisq= 4.95605;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 10; W_sigma={0.0768,0,0,0} Coefficient values ± one standard deviation CCC = 12.615 ± 0.0768 Beta = -1.21 ± 0 a = 2 ± 0 z = 2 ± 0 •Legend/C/N=text0/J "\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3" •ModifyGraph width=75,height=75 •ModifyGraph width=75,height=75 •ModifyGraph margin(left)=30,margin(bottom)=30 •ModifyGraph margin(left)=30,margin(bottom)=30 •Label left "\\Z08Electrophoretic Mobility (µm·cm/Vs)" •ModifyGraph fSize(left)=8 •Label bottom "\\Z08Salt Concentration (mM)";DelayUpdate •ModifyGraph fSize=8 •Legend/C/N=text0/J/M "\\s(EM_NaCl)\\Z08NaCl\r\\s(EM_KCl)\\Z08KCl\r\\s(EM_CsCl)\\Z08CsCl" •Legend/C/N=text0/J "\\Z08\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl" •ModifyGraph fSize(left)=8;DelayUpdate •Label left "\\Z08Stability Ratio" •Label bottom "\\Z08Salt Concentration (mM)";DelayUpdate •ModifyGraph fSize=8 •Legend/C/N=text0/J "\\Z08\\s(w_KCl)KCl\r\\s(w_NaCl)NaCl\r\\s(w_CsCl)CsCl\r" •ModifyGraph margin(left)=30,margin(bottom)=30,width=75,height=75 •ModifyGraph margin(left)=30,margin(bottom)=30,width=75,height=75 •Label left "\\Z08Electrophoretic Mobility (µm·cm/Vs)" •ModifyGraph fSize(bottom)=8;DelayUpdate •Label bottom "\\Z08Salt Concentration (mM)" •ModifyGraph fSize=8 •Legend/C/N=text0/J "\\Z08\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3" •ModifyGraph msize(w_NaCl)=2,msize(w_KCl)=2,msize(w_CsCl)=2 •ModifyGraph msize(EM_NaCl)=2,msize(EM_KCl)=2,msize(EM_CsCl)=2 •ModifyGraph msize(EM_KCl)=2,msize(EM_CaCl2)=2,msize(EM_LaCl3)=2 •ModifyGraph msize(w_KCl)=2,msize(w_CaCl2)=2,msize(w_LaCl3)=2 •Label left "\\Z08Stabiltiy Ratio";DelayUpdate •ModifyGraph fSize(left)=8 •Label bottom "\\Z08Salt Concentration (mM)" •Legend/C/N=text0/J/M "\\Z08\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3" •Legend/C/N=text0/J/M •Legend/C/N=text0/J/M •SetAxis left -3,1 •SetAxis left -3,1 •SetAxis left 0.5,2000 •SetAxis left 0.5,2000 •SetAxis bottom 0.5,2000 •SetAxis bottom 0.5,2000 •ModifyGraph fSize=8 •SetAxis bottom 0.1,1000 •SetAxis bottom 0.5,2000 •ModifyGraph rgb(EM_KCl)=(1,34817,52428) •ModifyGraph rgb(w_KCl)=(1,34817,52428) •ModifyGraph rgb(fit_EM_KCl)=(1,34817,52428),rgb(EM_KCl)=(1,34817,52428) •ModifyGraph rgb(fit_w_KCl)=(1,34817,52428),rgb(w_KCl)=(1,34817,52428) •ModifyGraph rgb(fit_w_KCl)=(1,34817,52428) •ModifyGraph rgb(EM_NaCl)=(52428,1,1) •ModifyGraph rgb(fit_EM_NaCl)=(52428,1,1) •ModifyGraph rgb(fit_EM_CaCl2)=(52428,1,1),rgb(EM_CaCl2)=(52428,1,1) •ModifyGraph rgb(fit_w_NaCl)=(52428,1,1),rgb(w_NaCl)=(52428,1,1) •ModifyGraph rgb(w_CaCl2)=(52428,1,1),rgb(fit_w_CaCl2)=(52428,1,1) •ModifyGraph rgb(fit_EM_KCl)=(1,34817,52428) •ModifyGraph rgb(EM_KCl)=(1,26221,39321) •ModifyGraph rgb(fit_EM_KCl)=(1,26221,39321) •ModifyGraph rgb(EM_KCl)=(1,26221,39321) •ModifyGraph rgb(fit_EM_KCl)=(1,26221,39321) •ModifyGraph rgb(fit_w_KCl)=(1,26221,39321),rgb(w_KCl)=(1,26221,39321) •ModifyGraph rgb(fit_w_KCl)=(1,26221,39321),rgb(w_KCl)=(1,26221,39321) •CurveFit/M=2/W=0 HillEquation, EM_LaCl3/X=EM_LaCl3_Conc_mM/D Fit converged properly fit_EM_LaCl3= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_LaCl3[p]^W_coef[2]/(fitX_EM_LaCl3[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-1.9545,0.55231,0.54055,0.061699} V_chisq= 0.179961;V_npnts= 14;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 13; W_sigma={0.279,0.0815,0.125,0.0326} Coefficient values ± one standard deviation base = -1.9545 ± 0.279 max = 0.55231 ± 0.0815 rate = 0.54055 ± 0.125 xhalf = 0.061699 ± 0.0326 •CurveFit/M=2/W=0 HillEquation, EM_CaCl2/X=EM_CaCl2_Conc_mM/D 40 iterations with no convergence fit_EM_CaCl2= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_CaCl2[p]^W_coef[2]/(fitX_EM_CaCl2[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-1.2331,1.8214,0.2986,297.76} V_chisq= 0.0954387;V_npnts= 12;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 11; W_sigma={0.493,2.62,0.263,1.46e+03} Coefficient values ± one standard deviation base = -1.2331 ± 0.493 max = 1.8214 ± 2.62 rate = 0.2986 ± 0.263 xhalf = 297.76 ± 1.46e+03 •CurveFit/M=2/W=0 HillEquation, EM_KCl/X=EM_KCl_Conc_mM/D Fit converged properly fit_EM_KCl= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_KCl[p]^W_coef[2]/(fitX_EM_KCl[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-1.5803,-0.12522,0.93763,34.792} V_chisq= 0.0107413;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.0641,0.0602,0.152,4.97} Coefficient values ± one standard deviation base = -1.5803 ± 0.0641 max = -0.12522 ± 0.0602 rate = 0.93763 ± 0.152 xhalf = 34.792 ± 4.97 •CurveFit/M=2/W=0 HillEquation, EM_CsCl/X=EM_CsCl_Conc_mM/D 40 iterations with no convergence fit_EM_CsCl= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_CsCl[p]^W_coef[2]/(fitX_EM_CsCl[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-1.7442,0.39293,0.18238,2.6636} V_chisq= 0.0110429;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={4.2,1.94,0.514,32.7} Coefficient values ± one standard deviation base = -1.7442 ± 4.2 max = 0.39293 ± 1.94 rate = 0.18238 ± 0.514 xhalf = 2.6636 ± 32.7 •CurveFit/M=2/W=0 HillEquation, EM_NaCl/X=EM_NaCl_Conc_mM/D Fit converged properly fit_EM_NaCl= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_NaCl[p]^W_coef[2]/(fitX_EM_NaCl[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-2.9303,0.27021,0.5276,25.207} V_chisq= 0.0349931;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.431,0.337,0.17,9.25} Coefficient values ± one standard deviation base = -2.9303 ± 0.431 max = 0.27021 ± 0.337 rate = 0.5276 ± 0.17 xhalf = 25.207 ± 9.25 •ModifyGraph expand=3 •ModifyGraph rgb(w_CsCl)=(43690,43690,43690) •ModifyGraph rgb(fit_EM_LaCl3)=(43690,43690,43690),rgb(EM_LaCl3)=(43690,43690,43690) •ModifyGraph rgb(w_LaCl3)=(43690,43690,43690) •ModifyGraph expand=0 •ModifyGraph rgb(fit_EM_KCl)=(12079,16448,21074),rgb(EM_KCl)=(12079,16448,21074) •ModifyGraph rgb(fit_w_KCl)=(12079,16448,21074),rgb(w_KCl)=(12079,16448,21074) •ModifyGraph rgb(fit_EM_KCl)=(59110,12850,15163) •ModifyGraph rgb(EM_KCl)=(59110,12850,15163) •ModifyGraph rgb(fit_EM_NaCl)=(12079,16448,21074),rgb(EM_NaCl)=(12079,16448,21074) •ModifyGraph rgb(fit_EM_CsCl)=(48573,55769,49344),rgb(EM_CsCl)=(48573,55769,49344) •ModifyGraph rgb(fit_EM_KCl)=(59110,12850,15163),rgb(EM_KCl)=(59110,12850,15163) •ModifyGraph rgb(fit_EM_CaCl2)=(65278,51657,22359),rgb(EM_CaCl2)=(65278,51657,22359) •ModifyGraph rgb(fit_EM_LaCl3)=(37522,36751,34438),rgb(EM_LaCl3)=(37522,36751,34438) •ModifyGraph marker(EM_LaCl3)=18 •ModifyGraph marker(EM_CaCl2)=52 •ModifyGraph marker(EM_CaCl2)=23 •ModifyGraph rgb(fit_EM_KCl)=(12079,16448,21074),rgb(EM_KCl)=(12079,16448,21074) •ModifyGraph rgb(fit_EM_NaCl)=(59110,12850,15163),rgb(fit_EM_KCl)=(12079,16448,21074),rgb(EM_NaCl)=(59110,12850,15163),rgb(EM_KCl)=(12079,16448,21074) •ModifyGraph rgb(fit_EM_CsCl)=(39321,50629,41120) •ModifyGraph rgb(EM_CsCl)=(39321,50629,41120) •ModifyGraph marker(EM_NaCl)=16,marker(EM_KCl)=19 •ModifyGraph marker(EM_KCl)=19 •ModifyGraph rgb(EM_CsCl)=(31868,46774,34181) •ModifyGraph rgb(fit_EM_CsCl)=(31868,46774,34181) •ModifyGraph rgb(fit_w_NaCl)=(59110,12850,15163),rgb(fit_w_CsCl)=(31868,46774,34181),marker(w_NaCl)=16,rgb(w_NaCl)=(59110,12850,15163),marker(w_KCl)=19,marker(w_CsCl)=19,rgb(w_CsCl)=(31868,46774,34181) •ModifyGraph marker(w_CsCl)=17 •ModifyGraph rgb(fit_w_KCl)=(12079,16448,21074),rgb(fit_w_LaCl3)=(37522,36751,34438),marker(w_KCl)=19,rgb(w_KCl)=(12079,16448,21074),rgb(w_CaCl2)=(65278,51657,22359),marker(w_LaCl3)=18,rgb(w_LaCl3)=(37522,36751,34438),rgb(fit_w_CaCl2)=(65278,51657,22359) •ModifyGraph marker(w_CaCl2)=23 •SetAxis left 0.2,5000 •SetAxis left 0.2,5000 !ߨXbSќ EM_NaCl_Conc_mM ????>@N@Y@r@@@@?@$@ySќ EM_NaCl ????R \j@c濹ܒؿ[":Ͽt˽ÿ.+F~3Sќ EM_NaCl_STDEV ????3`?m7K?hT5?>?跪?֭?8?լz?!f?y^JҜ EM_KCl_Conc_mM ????>@N@Y@r@@@@?@$@f؈^TҜ EM_KCl ????te5jp=me޿ԿOY_}Ͽ RLÿ֩'q7W$cDj^_Ҝ EM_KCl_STDEV ????+oV?F簆?~?S+?Q?D0_?:t%?x$?O2&5?dj ^Ҝ EM_CsCl_Conc_mM ????>@N@Y@r@@@@?@$@? ^Ҝ EM_CsCl ????$ܿ?Zsؿsӿ],kҿɿ [7N0g˝Y⿄' W!^Ҝ EM_CsCl_STDEV ????~f?cM?r{š?0- O? yDp?1[; B?;2u?5M]?%M9f?hf:K?]Yd֜ EM_CaCl2_Conc_mM ?????@$@>@N@Y@?333333?i@r@@@@fQYd֜ EM_CaCl2 ????be{6zῚ-Q׿Ֆts̿n6ʿ=&D,ÿ^Bj񿠨P$鿓?yz? z?hjJ?x^Yd/֜ EM_CaCl2_STDEV ????"jP>?iiv1?#о? N!?^S?U?r۔?Kty?6[Ϧ?V0?U?/nM?RVYd֜AEM_LaCl3_Conc_mM????Q??333333?MbP?~jth?{Gz??@$@>@N@Y@r@@UDYd֜AEM_LaCl3????CqpϬ↓b޲⿺ĿZ(q 6ss=͵ecoԈ?.y??2?U ?kM?|Hx?b[E?pӰS֜AEM_LaCl3_STDEV????%ɛ?T'>? h(?[d?2,|i?_?2/?x }[?4ph?DZ@?DiK?π=??U?d{q?Đ^$ޜ[ޜ w_KCl_Conc_mM ?????@$@>@N@Y@r@@@@p@FYd;ޜ[ޜ w_KCl ???? H@@L6M@@,@)@v2?K?uL6??X ?1`zޜޜ w_NaCl_Conc_mM ?????@$@>@N@Y@r@@@@p@`ޜޜ w_NaCl ????\8@`6@IQ@kJx/@4^,@) C@u:?4y?# M?8ӅX?|`ޜߜ w_CsCl_Conc_mM ?????@$@>@N@Y@r@@@@?1ې`ޜߜ w_CsCl ????uk~~@?@qJ= @4I~?U?um?ME­?~?,?ew@G` w_CaCl2_Conc_mM ?????333333??@$@>@N@Y@r@@@@&` w_CaCl2 ????*7SW@` 8@[zk!@u$X@L{? 6 ?\@N@Y@r@@@O`3w_LaCl3????E )]@QŞH@#p:?0@To"@,G:@I? 7?NAt6?$9?$O?] wCG?8+)'?yZ?"y?.?D``>⍮>W_coef????S+XHqL*K??e49@8`KLfit_w_KCl~r!@????c@z/ɦ@_5J@'Zb@֌@ \@+8@=P@mV4MqR@':&v@Of*@Gm@Q@uS!!*@ג@fOZ@0lr@F从@G@BԊ@7x @xel@:>@Cs@'@Z ځ@`᢮@|G,@U̡Ri!}@,N8{@75Xoy@b>olw@]5v@dyPt@صds@\- }r@ p@ e]o@i ڔm@CI6k@k %i@%h@1XUSf@~e@c@?Fmb@ S9a@v `@b?^@/9=\#\@`{NZ@A8)X@]`RV@;CnU@X8(T@BR@( ғQ@.fCpP@eYN@kWFL@ބ/>J@bb*I@G@[F@618ҝD@sUKC@FZ+B@a-v@@36:?@r=@ӑ;@ ԥ)]9@'ǿZ8@6@kb5@Xu 4@rZ+2@jğ1@FO 0@#k/@:y-@c&T+@BQ)@Ml(@G#a&@oyL%@} $@ Dţ"@P(.!@&HZ @Cy@g*@m0@|}h@SDN @ҍoЎ@p&E@J4{E@з-%@l@z@@&@86ϸ@ek6 @ @م< @.xZL @x0U)@ܷ[3@^3@}X-.@6IfP@6`.3@4x@rn @|a@ނ@sqvp0@JگJM?z~NK? @D[?0ņz?lӎ?^)c? -?!Q?A ?{tL??3\>?Cz?HR?b/8? ӄ?^'?dI4?XLL&?s8l4?0y ?mX?Cm?'4?`u6?Cn?JL͜?Cp?G?\bZg!?؎??4T?bOż?s?x:?j?dR?ɧ!f,?ݳ.)? y&?WZ#?%!?6i`?5PvP?gB6c?a?nO?"AU?,o?~?M6?0,3?fit_w_KCl= CCC(W_coef,fitX_w_KCl[p]) W_coef={77.41,-1.85,1,1} V_chisq= 11262.3;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={0.47,0,0,0} Coefficient values ± one standard deviation CCC = 77.41 ± 0.47 Beta = -1.85 ± 0 a = 1 ± 0 z = 1 ± 0 `KKfitX_w_KCl?????S?Ioe8?j?V0q?o8:?sz?7??w?wQ'E?I?Bc?Y=?T ?gC?f:D?r0[? :g?s/?|c@ @WicPN@:@+ߠ@^cS@ٙ} @/@p @roBb@qӕY9@@՟@)Q @ @G @H` @" H @h])@0)@s@=WDe@09M @J|A@=)ɚl@=*&@:f@;#I@l$ @tBW@`q7@~D!@,JgC@;* @k$ @"pn@lu)0@^'R@L&? @ǀ @\|!@Nf#"@Ī"@T#@q$lD5A$@N%@>%@*[%&@CsMv'@#W(@d@)@`2*@gk-+@vb1,@wr @-@cZX.@Dʗ&{/@yojT0@7f0@!y?1@PF;2@=i%f2@M3@T[[4@A5@!0p55@wP.6@gY7@tP\v8@{qa9@7ҪT:@RnP;@cV<@۫HVf=@P>@E{[?@dzi@@I\A@`AA@LSB@(C@,ZZC@F&^vD@ODu:E@'"F@Q;F@[ZeG@)H@P I@2!wJ@sʥʿtK@L{L@ ьM@E0N@ NO@WFP@m_]Q@#*`\`Q@jƐkR@Y"N S@ѝ+S@I&T@>VU@n]""V@V@=%W@;y5X@4Y@7ƙZ@[@B;$\@xH/]@F^@sWg_@gSޔ`@հ3a@{a@9Jߢb@5c@c@/ d@ER,re@nZ|?f@Qg@Cg@lT]h@՞i@{j@ 'ϼk@ l@R`m@>Stn@wop@咒p@.tIJq@X|q@'ޛr@2Ns@3t@΄!t@ (>u@.\v@t3w@JHnx@;x@iܮZy@ξz@)#{@fH|@ks~@& @Д%@[%;c@M`@Jt@jS:@:xPwg@bfj!@DS@$u@l'z@fZzQ@50@Zf@B @c@y@~$@(@iI@@:@cVqP֐@a w@2O @+˵̒@V݀@<®V;@Fs}@8pƕ@܀@p@_C``>⍮>W_sigma????wP?ks?v?y}"@`ᨤfit_w_NaCl~r!@????8~ @=xwͪ@-lM)@Y{ߞ@*,@K'3Ѥ@x@+gX@;ah8@]*@ӭ [@sH@&@h@<%ԓ@C\"@L^Nǔ@9y^A큓@FP@w7Y1@(J#@i HN@Ts@B浊@gJj@V0Њ@8i$@E3 @6({@BL`+J@G+@7:@6XE~@PXk|@P)z@2{ y@<*ԅw@5zv@vot@|(jxs@]bHr@WeNd*q@:_؅3p@z:Dn@}0ll@=7uj@。 i@ ވg@;>Ff@ ,/d@O}c@ƦBNb@g0a@1U%`@֪\9T^@6ƒ|\@ Z@O)!"Y@W@Pڋʥ-V@/T@<-S@`cR@p݄GQ@{@[f=@R d;@[! 9@J|n)B8@Er6@Pp5@A=4@赾3@1@ֵ30@y|/@~ .@4tU,@w*@\P5)@lc'@U=$s&@ ul 3%@!$@lėP\"@' !@d+ @"|_@T|phG@G(@(vb@>oC)@Sz)g@ʍw? V?F* ?D ?*BEA?΁?c+?L-[#?"4Ya?>%?p c?ba?d? az7.??#b?h@?_?B^c?(??u?pX5/?ڗ?)D?T,v?S??)e ?!e?M2?\ ?YDx^?_z8IR9?|r?i43??۹!?"Ƈ ? Ho2?Wm?[W?1RB?H+.?a ?Υ ?qDP?a?x?ʌ֢?.}d?l>|?N?1vР?RW?%I6?ᰘB ?3*"|?6$?~/~:?lT6?hNj3?fit_w_NaCl= CCC(W_coef,fitX_w_NaCl[p]) W_coef={117.85,-1.72,1,1} V_chisq= 80892.1;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={1.76,0,0,0} Coefficient values ± one standard deviation CCC = 117.85 ± 1.76 Beta = -1.72 ± 0 a = 1 ± 0 z = 1 ± 0 `ឤfitX_w_NaCl?????S?Ioe8?j?V0q?o8:?sz?7??w?wQ'E?I?Bc?Y=?T ?gC?f:D?r0[? :g?s/?|c@ @WicPN@:@+ߠ@^cS@ٙ} @/@p @roBb@qӕY9@@՟@)Q @ @G @H` @" H @h])@0)@s@=WDe@09M @J|A@=)ɚl@=*&@:f@;#I@l$ @tBW@`q7@~D!@,JgC@;* @k$ @"pn@lu)0@^'R@L&? @ǀ @\|!@Nf#"@Ī"@T#@q$lD5A$@N%@>%@*[%&@CsMv'@#W(@d@)@`2*@gk-+@vb1,@wr @-@cZX.@Dʗ&{/@yojT0@7f0@!y?1@PF;2@=i%f2@M3@T[[4@A5@!0p55@wP.6@gY7@tP\v8@{qa9@7ҪT:@RnP;@cV<@۫HVf=@P>@E{[?@dzi@@I\A@`AA@LSB@(C@,ZZC@F&^vD@ODu:E@'"F@Q;F@[ZeG@)H@P I@2!wJ@sʥʿtK@L{L@ ьM@E0N@ NO@WFP@m_]Q@#*`\`Q@jƐkR@Y"N S@ѝ+S@I&T@>VU@n]""V@V@=%W@;y5X@4Y@7ƙZ@[@B;$\@xH/]@F^@sWg_@gSޔ`@հ3a@{a@9Jߢb@5c@c@/ d@ER,re@nZ|?f@Qg@Cg@lT]h@՞i@{j@ 'ϼk@ l@R`m@>Stn@wop@咒p@.tIJq@X|q@'ޛr@2Ns@3t@΄!t@ (>u@.\v@t3w@JHnx@;x@iܮZy@ξz@)#{@fH|@ks~@& @Д%@[%;c@M`@Jt@jS:@:xPwg@bfj!@DS@$u@l'z@fZzQ@50@Zf@B @c@y@~$@(@iI@@:@cVqP֐@a w@2O @+˵̒@V݀@<®V;@Fs}@8pƕ@܀@p@!`')fit_w_CsCl*) '@????Gi@@iu@ @.ɢ@Yѝ;\@@*@>p @g @t@LQC?@+@@u@%w@3jrÂ@W@E9,,h@`>~@b|@6{BQ z@!jy@2 vw@nu@-At@)<0s@Tfq@q`2p@do@m\m@#`[}uk@G߮i@x~h@8wf@AQSe@7LS6c@ToDx cb@ q9-3a@iX`@A^@)\@|YZ@XbpX@lڛW@U@6' 1T@G:R@͏[`Q@mTP@,<N@46M@\@&K@yfjI@ OG@;xAHF@a#D@dC@RMB@%Z%A@>Nq@@bx>@C+qIb6<@^) xq:@y8@92>7@f25@^hqq4@J0.3@&]1@c0@3/@Tg-@`31+@cX,eJ*@\(@AW<'@FE$%@йq$@$zv[#@7m:"@>ax,!@VA/ @r(@8, @jԏ21@1@IF@3@/0W@FcY@>:~@g<7|@T@U@̠h@$y$@}) @bj^[ @ߣ2 @z@U@F\)@ :@S@BjmS[@m>N@@`Ï@5l㘊=@NQ@p@QX?v?ʈ4?-`OX?-GMA?? {?*Hoo?H_y?E"??C 5Z?+BL'5?)YX? \|M?~ϋ?lҿ?6'? HF?m?б\ 6?c?M?o8q?;7?\?IF?D.r?L,u?Wzv>L?s&?8?v84?a8?֐쪤?xQ?}7o?W?{A?)*,?7] ?-?5b?Gr2I?E ?KY?_Av»??ujF#? kw? -}?R(?38p}?UHu?:)Rm?7f?_?lEY?S?7=ZN?발BI?W5KD?ۥ? @?nR;?)K7?!X4?$[0?t-?\^*?J.>(?Qjg%?Oڴ"?в ??:ݿ?? 2)?rA]?&c?1l?zL?*?y~nԱ?N=?,?E ? X6( ?t? 7LM?:i@o@f@@fsn@Cn&@3"KN@H?6@7?y@tɜO@U=.@>g@8" @NWƒ @# @ I @`.o& @!EH@ρ/v@i]9X@}?L"@Pb@ڰp:T@h @/(@f&@HZ@5/@: @؄@\/@23u*@R@9`w@@Ĕw@\I@29i@ @ F @Ur !@9"@/"@|F2K#@]O`p$@oG<%@.k&@H&@g'@8_Ep(@>)@(7*@Ռ`+@^,@`2-@/@|3c)0@`Ny0@q1@,´2@щY2@0i3@iS4@t-5@bH 5@G۴6@s7@ K8@A9@{؍:@K.;@o8}<@#+=@z@>@u*@@[2Y@@rfjXA@\B@ KB@NFsC@]5 5D@Z?D@^oE@wF@l~=ڋG@evH@:|T_jI@GgJ@~3nK@T9NL@EbM@⚸N@)&O@t[P@NR?Q@jeaQ@ڊdR@ZWS@>T@̹-T@U{/U@أ]!eV@B)jW@>&HeSX@EY@uAZ@}hvG[@#![W\@q]@'R^@)DF:_@ǀ`@l@'a@ha@(b@8Α,&w@UؒG x@fox@GSy@UJz@$|@zv}@?~@I9d'm@X9v1S@K@@GxT@tq`N@~t@$m=ƒ@O@J4T@˸(@ @.6 @.cP,و@[$&5щ@}Ҋ@7݋@9@bɺ2@?@&`fit_w_CaCl2هP6@????&t9MW@V V@1T@!?S@ŵ̴R@+Q@;P@{tuѦO@#|M@dxYL@ b ~J@IPTfI@iZ) H@1nF@xj}E@Νcx gD@zuGQC@,KB@DSA@t(h@@菮g?@ q=@M^\;@ H\n:@sQG 9@V7@<#\6@S5@\84@\k!b,3@\N.2@Jj?1@ͫ6\0@ B] /@Mx-@rL+@'*@9b8)@Zz'@I u&@P]%@}J$@t#@X=."@IOϰ!@²s @rLU%0 @{HD3@X)@T@Q4@Bl@#J@4@ܜ @@qc@ y"@ Seg@1i'@PdS@1@.@Pcu@]%cp@X4 @wQ%z @yt\ @nN @FToO @h^@Py@:@2F@<)@@sj^@J;H@Y4@{iu@$&5@pGCZY@%@Za[@jm?wI ? Aܪ!?!(\?9ϐV?Gex/?gK?,J#?CŔ:?m?nQL?5Kj?R`*d?dlJ١?*o7?E|?uJs?|;?s.| ?X6s>t?jl,3(?VV@&L?tO?5\?ұ>?!XB?TKHn?f |?"5vK?Ԇ?6p;?AP]>?B/?fqw}?Z?MB9?U5?u?V4>??Y~?Q E? )?!Tl?IX?iNE?H^{3?aZ #?0?b4?+?kwء?lX??ꮧ?O?b?ѯ?К=?S 0?(ɭr?E>4?:H?^8'}?t,cv?FNTp?d5j?ymd?^?fpY?0T? gEP?7K?G?obC?"H)@?x贪C ?ƕKN ?Ω ?;ė ?f~ ?7Sn ?Ro?*)L??N/$9?tWn?:4u?9:*?w"?ru?fit_w_CaCl2= CCC(W_coef,fitX_w_CaCl2[p]) W_coef={12.615,-1.21,2,2} V_chisq= 4.95605;V_npnts= 11;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 10; W_sigma={0.0768,0,0,0} Coefficient values ± one standard deviation CCC = 12.615 ± 0.0768 Beta = -1.21 ± 0 a = 2 ± 0 z = 2 ± 0 `fitX_w_CaCl2?????~Z к?ǜ4? i?'Ktξ?}+"?Qxi?(󊓲?K n1?Wi?HiU?K?iBN?Tn\?DGx?ngϠ? ?t2?Ҏ r?i2"?. &?0l?R?^j?[ro?yH#[? 0NQ?ҳT?kZWc?mE~?%=?ITd)?s%?f]Wz?!?8͈+?ݞa0?֡?x?srt?B`?>W?+Z?fi?W},݅?)A?,(?#c,?f""?}j?DgN/?B_?EkՋ?,qߘ?Ofz?b9!f?Bu^? a?Tمp?VŌ? }? 8N?v.o4??Yy8?W\:4@ۡ@{i@pRU@@D[l@d@ng@wRw@e@< @}I @q.< @A,F @)x@8@Ce@ @:&gZ@"1Ы`@08|r@ݼb j@m@D$ ƻ}@t@@10|@R*D@26f@k܂@R\= @3rPmL!@Tiɐ!@쪎"@B+#@w$@ cp%@ t&@eg Y'@/<(@<<)@ne:+@IdL,@--@k d /@;A0@x1@nB1@z3ۭ2@&7a3@94}4@Fnv5@xbz6@Q$7@Wy8@q9@~\h ;@?~ܹT<@!eNK=@P/#?@^nF@@ A@P%A@6/B@jC@CgD@c*|E@z:F@y>G@%kH@gT+%I@PK@\L@ȦM@O@$KP@Q@ GqQ@XbR@H{ngS@+i@=.l@`@3@FEFˈ@iy@ł2@ o}|@̛B,֍@?@&`y{fit_w_LaCl3@???MbP?6]@C*x35\@-Z@| kY@k@ҰW@H{ZV@:=U@YFS@g/V?R@~fڗQ@HB&aP@)psO@EڙM@nć!L@hhUJ@I@G,HkêG@UokXF@B`E@hC@PB@ā~]A@絍!@@쾒?@,d=@ZSO<@v6::@R%H9@-@7@UR4!6@Q[5@ ^ |24@tT3@Ҕ:2@%u1@Jc-0@f/w.@?^$G ?XPý?Y'?Tf?\?3\=?|DN?ۮU?4۴?R5@gN?Ya y?%Ʉe7??,3?B?U?.W$??ޖ ?"ԙޢ?\s^|?ȕX?=v5?~A8?S? -9i?5X?dӥ?'?iw?ta?y~M?ǀ(Bx:?"w(??%J? ?#o?ε?<?,?mJ?z?Ds?ȉ=m?c*g?!a?-5[?]V?>pQ??L?)ԃ[iH?>4GD?tb@?L(?I%?.x#?b߽!??l?-CJ?܈? '?4$?W]?j??U?î?C̓?I*?a`? = ?;. ?{q *n ? ?Vq ?ӫl ?j ?KD ??B.W=?+C?ʈS?6?Wۤ?A$?_?E6s4v?Tp&?(9?zxL?$kQ?uw[?fit_w_LaCl3= CCC(W_coef,fitX_w_LaCl3[p]) W_coef={1.5483,-0.86,3,3} V_chisq= 10.0032;V_npnts= 15;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 14; W_sigma={0.0118,0,0,0} Coefficient values ± one standard deviation CCC = 1.5483 ± 0.0118 Beta = -0.86 ± 0 a = 3 ± 0 z = 3 ± 0 9`yyfitX_w_LaCl3????MbP?\K̊Q?#AR?)t&T? U?=7ո W?k AX?%jymZ?,0K\?7K^?[8`?ə2,]a?Lޗb?'貑Xc?6aPe?&Uf?.\kToh?M)j?;<l?lW*m?JQp?,0q?6g.gr?b!s?fu?*v?иbb0x? y?Sκ{?K0}?gmVi?X1?{8?GeK?KCW?X]?ؠb?nnKh?P`s?mv#d?rx? fؐ?gƞ ?m,@ P?GAՈ?#?p!c?\a?#0%,?܉mm?" &?)ҊZ?Ax'ۡ?>?)J?aѸmDx?>??Rw?D?6r?yͬ?Tq)֮?gTzd? n (?> ; ?];>C?J>?Ok:?mQB߸?\?-zG?sD?hdW?2?+I?QNU?8OIZz?>?(B_/?k9\?)-9?"8?>-?WJR??B?vBC?Fy?bYT_?=f?8?M?̭?tl%? J>\??B?L+@ ?&?sg ?;?)N#?Ob5?,? ?"5,?]:Hu?[?*O?5&9?D]?jea?$^iQ?F,f4c?H.@H @)UC@ۼ[@p@Qu*H@XP0Q @C%X @u& @1'@PRT@{@<^@*9k@Fk@ _^h@ft@ @=\N@ h@b%Jw @x!@:C"@F񚕟6$@j%@J,'@knh(@V?c*@G&q,@s.@RrM0@lvxt1@ΩX2@ 84@Ґl5@j`6@G8@)K:@w'<@T6|]%>@U}s#@@vGA@O4B@yȍC@y5E@R'$IF@>2e):PH@7J@jOK@o,M@g:RO@} KQ@7elPR@/dS@m}_3T@~T zV@VL?X@4-~(Y@&"[@KtԊ]@[r_@EM`@<]!b@ vic@Yd@?7@f@9Zg@tłi@8SoPk@zʯ>m@EšoOo@aNp@^9>q@u7s@1<6t@ƍv@6w@MAy@.. {@ҊKd|@i_M~@^w/ @_ mā@ V@&86^@//΅@>tY@@f 膀`>⍮>fit_EM_NaClв9@????mY* No[_S 5O4>UaLN. ח!Ώ k}Ϧ x5^xv9% | A-jr}{Җfj8Wfc+PDx0+N]H =uە.G>ѕX{v]Y,I=g$xbKnӐbѱL-6v , LUV&$<}8H-Hn"bg{O(z[7jR5U & ~R|vX;n DeU eW[puP i$AW5S GV,![LkpK 5?`JڧoST0WZRz]44߀-b#vsB,d_쿀3c@_7f0v pi뿸&ۗ@ ̀*dAj8鿔Lhm~-ԍ;Dxa}]|V}濬Rѐ濸4hq+p忬نb,v@Be俰9T;T*}0z㿤[㿸k.0uN_|fH῀^dK CCgD0>࿠t߿1bG߿r޿QݿTݿp]WZwܿ8hyۿ=-ۿ ڿUkٿ! kKٿqؿ|ؿƣx׿5_Pֿ{Iֿտp4!տ)ԿݖOԿx7rӿ!BҿZҿ!ѿIѿDlп2?пP┎yϿ3f0wοxͿp|̿QA^˿ʿ ƕɿ`_ȿ ]AǿB5ƿ ?7ſ@ ?ſ J/Ŀ`[RQRÿлʦNx¿;fit_EM_NaCl= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_NaCl[p]^W_coef[2]/(fitX_EM_NaCl[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-2.9303,0.27021,0.5276,25.207} V_chisq= 0.0349931;V_npnts= 9;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 8; W_sigma={0.431,0.337,0.17,9.25} Coefficient values ± one standard deviation base = -2.9303 ± 0.431 max = 0.27021 ± 0.337 rate = 0.5276 ± 0.17 xhalf = 25.207 ± 9.25  >`>⍮>fitX_EM_NaCl?????? w&?EkՋ?,qb?UT?'0gn?b9!f?e?^?)ͣ?Tمp?:`xD?i?_? 8N?^D?:?Fĸ^?Yy8?S码@9X@n3L+@{i@CGg@' @f.F(@D[l@%@d77:@I.@zRw@{2NK@n& @Nk @}I @ @# @(?d @-x@w @p@CO"0@ @@vl@@x@18|r@FHy*@|!e@u@F$ ƻ}@#O&R@v.@/y@10|@u@Y7@4e@o܂@9ӱ @;C @YI4!@Viɐ!@A@U5q"@?n#@'Z#@w$@<ڷ0%@-|9%@2mm&@hg Y'@p$X(@8)5)@&*@qe:+@!4}4@QJ65@!k5@l 2Z6@Q$7@e_8@CwB<9@r :@\h ;@dj;J<@…<@h>@P/#?@Eٔ@@ɒ@@>A@Q%A@[ |B@=d1#C@D)=C@HgD@b?G@n=ָfH@%^CI@>& 'J@ PK@r- L@]LM@~' N@O@YAWP@'9P@$UCQ@ GqQ@: AR@<(S@AeS@AW .T@ĎBU@sB V@ #+V@f=W@86mX@*/{JY@ z,/Z@Nn3[@MO\@!]@bA^@M%_@`@33q`@ dHa@_)a@\wb@۟-c@_ԍhc@wd@"ׁHe@>S f@=Qf@KY2g@yth@@I0Qi@xvi6j@u4ғ#k@Tl@APE m@/en@y@{m.o@0$p@2%p@,4BMq@;Kq@/5r@aL{a3s@ Hs@t@%!*Nu@Ӏwv@MNv@VIw@]H\{x@Xy@+Pk=z@8+{@l |@+=}@&~@K57@;w(@۝tں@ !R@}@.x=萂@8[8@@v=@OT@@1\r݆@`@3@JA@-A_@;ςRE@ł2@H(@vq'@%/@?@m a`g>g>fit_EM_KClв9@????_zQN*t\=m5?f+ _(~'WZ^ώO9өH0=\?^HGz7 .r0F&d7~:& yz62V1 >)Ă}aF< r$v =,> Bˊ.E_,}+oǟ˩`H)Q\pi.y(jn(2G̻\g|*ذHb F@3j!*Ȍ"#uo s.S@{edAThPI*v^uV&]>5zZ&[+?󿋐Lryȡ6Qd6f?#vEC?k3~Z߷hUb,SG ޓ0ۤ񿞅;񿂄OW'!.WX,JR+-񿤛 ]aC 7q3𿡇Dy]7K?=4,/)k#￶-\~ʒqe~'X rF.,K2㹪,$쿷|C3IbUM5sY꿖=n}?h=>~&nSS( GP^迀ږ 翂礧9jLA }O0ֆ1j8*濖A+Csػ~]K1þ,.ee`' 俞NEL! Y`) ~_xG`cp\ֿb̚oῴ y l`'eF҅kN%:)0C߿mL߿C޿L9wU.޿,͢ݿXݿ{ܿt޵ܿ@݌ۿЈ?s ۿv wڿ 'ڿNٿʦ(ٿieؿ@P˶CؿYm׿$ch׿lֿO,aֿ2ֿY տv=nտ|(տPFԿ,h YԿWԿSzӿTg Wӿx8O+ӿ\Mҿ( jgҿpZUxҿoѿWHѿ^Bѿg>fitX_EM_KCl?????? w&?EkՋ?,qb?UT?'0gn?b9!f?e?^?)ͣ?Tمp?:`xD?i?_? 8N?^D?:?Fĸ^?Yy8?S码@9X@n3L+@{i@CGg@' @f.F(@D[l@%@d77:@I.@zRw@{2NK@n& @Nk @}I @ @# @(?d @-x@w @p@CO"0@ @@vl@@x@18|r@FHy*@|!e@u@F$ ƻ}@#O&R@v.@/y@10|@u@Y7@4e@o܂@9ӱ @;C @YI4!@Viɐ!@A@U5q"@?n#@'Z#@w$@<ڷ0%@-|9%@2mm&@hg Y'@p$X(@8)5)@&*@qe:+@!4}4@QJ65@!k5@l 2Z6@Q$7@e_8@CwB<9@r :@\h ;@dj;J<@…<@h>@P/#?@Eٔ@@ɒ@@>A@Q%A@[ |B@=d1#C@D)=C@HgD@b?G@n=ָfH@%^CI@>& 'J@ PK@r- L@]LM@~' N@O@YAWP@'9P@$UCQ@ GqQ@: AR@<(S@AeS@AW .T@ĎBU@sB V@ #+V@f=W@86mX@*/{JY@ z,/Z@Nn3[@MO\@!]@bA^@M%_@`@33q`@ dHa@_)a@\wb@۟-c@_ԍhc@wd@"ׁHe@>S f@=Qf@KY2g@yth@@I0Qi@xvi6j@u4ғ#k@Tl@APE m@/en@y@{m.o@0$p@2%p@,4BMq@;Kq@/5r@aL{a3s@ Hs@t@%!*Nu@Ӏwv@MNv@VIw@]H\{x@Xy@+Pk=z@8+{@l |@+=}@&~@K57@;w(@۝tں@ !R@}@.x=萂@8[8@@v=@OT@@1\r݆@`@3@JA@-A_@;ςRE@ł2@H(@vq'@%/@?@e q`>≮>fit_EM_CsCl*) '@????G\%T ׭EC꿨5i#rw>TQQ6f )]2b@axX&Jq%5@d鿴EJy'u@xe s)<DNfvCy2l[P8<[t8ϣlH.7俀gf߰2I俰滂*俦͢T /A㿦~ꍀRAxaiXtP+NU㿺Vѣ7s O㿊T"m⿲/x+ji*3&⿦', L,c0BxE⿔,H'⿦o 8|f(2l®.Dޯ rῌTXe 6ῂꅝX^<࿲o࿆f(}A.<`$qe7GJ+)PbA /߿ߦ߿U|f߿+]!+߿s]޿H޿0z޿]?޿W+޿ݿݿ,CoUݿ ݿړRܿOpqܿ|vHlܿxOh62ܿH:ۿZmVۿHXۿJۿP&6ۿ J^ڿDڿNdڿ+ڿ<pٿؗٿ|Nٿ^Gٿ|jDٿ,wؿ@ؿ~;eؿP&bB-ؿ|,m׿T{\׿6 ׿d>/M׿6r׿6ֿ{.QֿTAnֿe7ֿxT~ֿ̾htտ\տ/-[տo%տK~ԿJԿ]ɁԿ?DKԿQOԿ|ӿ'iשӿ,tӿ;x>ӿ ; ӿ[ܰҿHkўҿ8iҿ@4EL4ҿ51ҿѿ ѿN>bѿ콾.ѿ]п|䁼пgؒп(̠5_пXC7+п0}Ͽx {MϿȅ*$Ͽ8QοpRXοVK}Ϳ˂Ϳ49")Ϳ(8n̿(Ua̿ȉ˿Ɂ˿"ߖ6˿`\ʿp=MqʿΉʿ)ɿa]IKɿТbȿ/wˈȿM1(ȿ@zǿ@dZgǿ}ǿJƿ0Hƿ@ſ0K!ſJ,ſĿH`#qĿG+ĿpnrÿX|OYÿ3Ď¿fit_EM_CsCl= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_CsCl[p]^W_coef[2]/(fitX_EM_CsCl[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-1.7442,0.39293,0.18238,2.6636} V_chisq= 0.0110429;V_npnts= 10;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 9; W_sigma={4.2,1.94,0.514,32.7} Coefficient values ± one standard deviation base = -1.7442 ± 4.2 max = 0.39293 ± 1.94 rate = 0.18238 ± 0.514 xhalf = 2.6636 ± 32.7 -,`>≮>fitX_EM_CsCl?????rWy?ְ(E?~2K?a%g!?{]?Q?wP?T޷?W?t? 7LM?:i@o@f@@fsn@Cn&@3"KN@H?6@7?y@tɜO@U=.@>g@8" @NWƒ @# @ I @`.o& @!EH@ρ/v@i]9X@}?L"@Pb@ڰp:T@h @/(@f&@HZ@5/@: @؄@\/@23u*@R@9`w@@Ĕw@\I@29i@ @ F @Ur !@9"@/"@|F2K#@]O`p$@oG<%@.k&@H&@g'@8_Ep(@>)@(7*@Ռ`+@^,@`2-@/@|3c)0@`Ny0@q1@,´2@щY2@0i3@iS4@t-5@bH 5@G۴6@s7@ K8@A9@{؍:@K.;@o8}<@#+=@z@>@u*@@[2Y@@rfjXA@\B@ KB@NFsC@]5 5D@Z?D@^oE@wF@l~=ڋG@evH@:|T_jI@GgJ@~3nK@T9NL@EbM@⚸N@)&O@t[P@NR?Q@jeaQ@ڊdR@ZWS@>T@̹-T@U{/U@أ]!eV@B)jW@>&HeSX@EY@uAZ@}hvG[@#![W\@q]@'R^@)DF:_@ǀ`@l@'a@ha@(b@8Α,&w@UؒG x@fox@GSy@UJz@$|@zv}@?~@I9d'm@X9v1S@K@@GxT@tq`N@~t@$m=ƒ@O@J4T@˸(@ @.6 @.cP,و@[$&5щ@}Ҋ@7݋@9@bɺ2@?@q &`[>[>fit_EM_CaCl2هP6@????Dpq>ᅯa#g~;-N|wwFȏpXIi|j`i_*Bm$CGpxڦqIoJڋbk+UKhľ*, XB)쿐.r.W/`6->6YXk9%qBu!bjrbd`M>,IEhX=WnWn%MǼ|MYTP,꿵h}>AMًj\K*1_>T5}ΝFG!S4nKT远^&<?hrGo=כkzl܉b<Y 翜K 1^{!dm>yxHn忂VFɯD|:!jBG忋fbgoH]俠ߨr i<CT̞㿰MM^㿼%ĩp+Ѳ⿈ĩҼx1W2>325zIAыpOΌ,њῖOu~zY[YE~u?h+߿@ 8߿qť޿J%IR7޿W<ݿ*02ݿܿ*mc*ܿ{ۿۿHoڿD_ڿn|ٿ&uؿ|_rؿ/׿$-Z׿ֿۛ9U?ֿ%%f°տHy&!տwHԿWӿvwUOxmӿLGҿ.{ Gҿѿvѿ>8 пϿIοZЂͿ}Q̿h˿cɿ>Zpȿ+|ǿStCƿ(Ϫv ſ00qv*ÿ(`¿81SSd٩ L@?b%[x XN2h鬿`BQuɧw)w&37/nyҧҙp?~?)?L ?`1ʅ¡?wj? 9XG?ǰ?5k?\4?P$?QJ+b?@ ?(o[?0{f??b^?\?k ?xPe?Ƙ3?`q?hYo?`^z ?9_L"?,cl=?\P?X_䓗?e.xD?_?dG?l)K?v?9nͤ?4cGQ? dJ+?xUC?8^>!W?Xj?n?䉧&[?}DTN?0 N?C^?g ?_L?YC^? 'H ?m0W?|.?A?'?H:*,?|WX?8U?(?fit_EM_CaCl2= W_coef[0]+(W_coef[1]-W_coef[0])*(fitX_EM_CaCl2[p]^W_coef[2]/(fitX_EM_CaCl2[p]^W_coef[2]+W_coef[3]^W_coef[2])) W_coef={-1.2331,1.8214,0.2986,297.76} V_chisq= 0.0954387;V_npnts= 12;V_numNaNs= 0;V_numINFs= 0; V_startRow= 0;V_endRow= 11; W_sigma={0.493,2.62,0.263,1.46e+03} Coefficient values ± one standard deviation base = -1.2331 ± 0.493 max = 1.8214 ± 2.62 rate = 0.2986 ± 0.263 xhalf = 297.76 ± 1.46e+03 cwS[>[>fitX_EM_CaCl2?????~Z к?ǜ4? i?'Ktξ?}+"?Qxi?(󊓲?K n1?Wi?HiU?K?iBN?Tn\?DGx?ngϠ? ?t2?Ҏ r?i2"?. &?0l?R?^j?[ro?yH#[? 0NQ?ҳT?kZWc?mE~?%=?ITd)?s%?f]Wz?!?8͈+?ݞa0?֡?x?srt?B`?>W?+Z?fi?W},݅?)A?,(?#c,?f""?}j?DgN/?B_?EkՋ?,qߘ?Ofz?b9!f?Bu^? a?Tمp?VŌ? }? 8N?v.o4??Yy8?W\:4@ۡ@{i@pRU@@D[l@d@ng@wRw@e@< @}I @q.< @A,F @)x@8@Ce@ @:&gZ@"1Ы`@08|r@ݼb j@m@D$ ƻ}@t@@10|@R*D@26f@k܂@R\= @3rPmL!@Tiɐ!@쪎"@B+#@w$@ cp%@ t&@eg Y'@/<(@<<)@ne:+@IdL,@--@k d /@;A0@x1@nB1@z3ۭ2@&7a3@94}4@Fnv5@xbz6@Q$7@Wy8@q9@~\h ;@?~ܹT<@!eNK=@P/#?@^nF@@ A@P%A@6/B@jC@CgD@c*|E@z:F@y>G@%kH@gT+%I@PK@\L@ȦM@O@$KP@Q@ GqQ@XbR@H{ngS@+i@=.l@`@3@FEFˈ@iy@ł2@ o}|@̛B,֍@?@x KwS>>>>fit_EM_LaCl3_4@???MbP?!4_0K'>!8Zl*!= ,bʶ:p7[¿<$Q?`q`./evR1Gyu~;Y9Hh4m3)[+B9 Q82L&ʻj~o[,Wפ9-:Pj̸ ۗP:{ &F1j:M`E ||0O%_uI(Uλ4]Yh񿗍^no<h#Osք'23]EO;]:f򆖗vI<뿨5ufCw1ʳ\ \|a2ʢxz V&/濌Ov:^GsHSJKju+>ῠl$ῖ]_o࿘nbst߿l ޿oOܿZEۿSٿ!FؿV!.׿+TpտDԿ:6ӿ(ѿl/Bп螊qοiE̿`»ɿ@rʟdǿL+Pſxs¿*fYd&Ü??6Y0?gHъ?ڛ?@~ہ?08^8@?@%s?9 ?,R?,(\?@fN?aM? 7?`*9?y"4?hh?q ?@U{rX??0^?0B?M=?XX?(b?\g?FL?p ??``g?p>>>fitX_EM_LaCl3????MbP?2 /OQ?N,7^_R?Y{T?JhU?^7V?SWxX?W{)Z?[?`hw]?^_?xya?_QFb?J* vc?Gd?Uf?Mg?=i?QkdJk?Y.l+-m?7Z2o?mRGp?xq? U s?V(\at?yAu?HKw?7Rx?B3z?Ux|?kp~?7C;E?=Ue?b*??B$B?R4?ʴIM?JK?^.ǪNj?;d?LJT?sF?!@{v<#@\Y~:R$@'zo%@ ;'@mPz=(@nލ*@ ac,@clZ.@rE90@0HY1@!!2@ƯRn3@2n35@Xа6@ ;8@l9@;;@h=Vԝ=@@j?@DϹE@@ B@8YC@Q}yD@5"F@R"YG@ǟGI@jsbK@w=L@VSN@MLP@*x}%rQ@\H.R@z),/T@rPsU@T%mW@ѪX@C*r_Z@PvC2\@+\%^@6!g{`@JN:a@ӼSkb@Y[Vñc@N^e@[Bf@e h@>ؕi@k@ jm@-,/ro@'p@RJ@q@e7s@ bt@3u@$Ń|w@XEy@ "z@s=K|@3O~@t%:g@{b@@wS>⍮>M_Covar????@]?;辿0=l?R9P@;辿KQ;w ?f{+#ѿ0=l?fpE? ?R9P@{+#ѿ ? R^U@*}// Platform=WindowsNT, IGORVersion=9.020, architecture=Intel, systemTextEncoding="Windows-1250", historyTextEncoding="UTF-8", procwinTextEncoding="UTF-8", recreationTextEncoding="UTF-8", build=39951 #pragma TextEncoding = "UTF-8" Silent 101 // use | as bitwise or -- not comment. DefaultFont "Arial" MoveWindow/P 5.25,44.75,705,500 Table0() Table1() Table3() Table2() Graph0() Graph1_1() MoveWindow/C 0,506,1023.75,644 Graph2() Graph3() KillStrings/Z root:gWMSetNextTextFilesTextEncoding Window Graph3() : Graph PauseUpdate; Silent 1 // building window... Display /W=(379.5,270.5,489,380) fit_w_CaCl2 vs fitX_w_CaCl2 as "SH_w" AppendToGraph fit_w_KCl vs fitX_w_KCl AppendToGraph fit_w_LaCl3 vs fitX_w_LaCl3 AppendToGraph w_KCl vs w_KCl_Conc_mM AppendToGraph w_CaCl2 vs w_CaCl2_Conc_mM AppendToGraph w_LaCl3 vs w_LaCl3_Conc_mM ModifyGraph margin(left)=30,margin(bottom)=30,margin(top)=5,margin(right)=5,width=75 ModifyGraph height=75 ModifyGraph mode(w_KCl)=3,mode(w_CaCl2)=3,mode(w_LaCl3)=3 ModifyGraph marker(w_KCl)=19,marker(w_CaCl2)=23,marker(w_LaCl3)=18 ModifyGraph rgb(fit_w_CaCl2)=(65278,51657,22359),rgb(fit_w_KCl)=(12079,16448,21074) ModifyGraph rgb(fit_w_LaCl3)=(37522,36751,34438),rgb(w_KCl)=(12079,16448,21074) ModifyGraph rgb(w_CaCl2)=(65278,51657,22359),rgb(w_LaCl3)=(37522,36751,34438) ModifyGraph msize(w_KCl)=2,msize(w_CaCl2)=2,msize(w_LaCl3)=2 ModifyGraph useMrkStrokeRGB(w_KCl)=1,useMrkStrokeRGB(w_CaCl2)=1,useMrkStrokeRGB(w_LaCl3)=1 ModifyGraph log=1 ModifyGraph mirror=2 ModifyGraph fSize=8 ModifyGraph btLen=3 Label left "\\Z08Stabiltiy Ratio" Label bottom "\\Z08Salt Concentration (mM)" SetAxis left 0.2,5000 SetAxis bottom 0.0008,1300 Legend/C/N=text0/J/F=0/M/A=MC/X=42.00/Y=41.00 "\\Z08\\s(w_KCl)KCl\r\\s(w_CaCl2)CaCl2\r\\s(w_LaCl3)LaCl3" EndMacro Window Graph2() : Graph PauseUpdate; Silent 1 // building window... Display /W=(388.5,121.25,498,230.75) fit_w_KCl vs fitX_w_KCl as "HM_w" AppendToGraph fit_w_NaCl vs fitX_w_NaCl AppendToGraph fit_w_CsCl vs fitX_w_CsCl AppendToGraph w_NaCl vs w_NaCl_Conc_mM AppendToGraph w_KCl vs w_KCl_Conc_mM AppendToGraph w_CsCl vs w_CsCl_Conc_mM ModifyGraph margin(left)=30,margin(bottom)=30,margin(top)=5,margin(right)=5,width=75 ModifyGraph height=75 ModifyGraph mode(w_NaCl)=3,mode(w_KCl)=3,mode(w_CsCl)=3 ModifyGraph marker(w_NaCl)=16,marker(w_KCl)=19,marker(w_CsCl)=17 ModifyGraph rgb(fit_w_KCl)=(12079,16448,21074),rgb(fit_w_NaCl)=(59110,12850,15163) ModifyGraph rgb(fit_w_CsCl)=(31868,46774,34181),rgb(w_NaCl)=(59110,12850,15163) ModifyGraph rgb(w_KCl)=(12079,16448,21074),rgb(w_CsCl)=(31868,46774,34181) ModifyGraph msize(w_NaCl)=2,msize(w_KCl)=2,msize(w_CsCl)=2 ModifyGraph useMrkStrokeRGB(w_NaCl)=1,useMrkStrokeRGB(w_KCl)=1,useMrkStrokeRGB(w_CsCl)=1 ModifyGraph log=1 ModifyGraph mirror=2 ModifyGraph fSize=8 ModifyGraph btLen=3 Label left "\\Z08Stability Ratio" Label bottom "\\Z08Salt Concentration (mM)" SetAxis left 0.2,5000 SetAxis bottom 0.5,2000 Legend/C/N=text0/J/F=0/M/A=MC/X=27.00/Y=21.00 "\\Z08\\s(w_KCl)KCl\r\\s(w_NaCl)NaCl\r\\s(w_CsCl)CsCl\r" EndMacro Window Graph1_1() : Graph PauseUpdate; Silent 1 // building window... Display /W=(207.75,272.75,317.25,382.25) fit_EM_KCl vs fitX_EM_KCl as "SH_EM" AppendToGraph fit_EM_CaCl2 vs fitX_EM_CaCl2 AppendToGraph fit_EM_LaCl3 vs fitX_EM_LaCl3 AppendToGraph EM_KCl vs EM_KCl_Conc_mM AppendToGraph EM_CaCl2 vs EM_CaCl2_Conc_mM AppendToGraph EM_LaCl3 vs EM_LaCl3_Conc_mM ModifyGraph margin(left)=30,margin(bottom)=30,margin(top)=5,margin(right)=5,width=75 ModifyGraph height=75 ModifyGraph mode(EM_KCl)=3,mode(EM_CaCl2)=3,mode(EM_LaCl3)=3 ModifyGraph marker(EM_KCl)=19,marker(EM_CaCl2)=23,marker(EM_LaCl3)=18 ModifyGraph rgb(fit_EM_KCl)=(12079,16448,21074),rgb(fit_EM_CaCl2)=(65278,51657,22359) ModifyGraph rgb(fit_EM_LaCl3)=(37522,36751,34438),rgb(EM_KCl)=(12079,16448,21074) ModifyGraph rgb(EM_CaCl2)=(65278,51657,22359),rgb(EM_LaCl3)=(37522,36751,34438) ModifyGraph msize(EM_KCl)=2,msize(EM_CaCl2)=2,msize(EM_LaCl3)=2 ModifyGraph useMrkStrokeRGB(EM_KCl)=1,useMrkStrokeRGB(EM_CaCl2)=1,useMrkStrokeRGB(EM_LaCl3)=1 ModifyGraph log(bottom)=1 ModifyGraph mirror=2 ModifyGraph fSize=8 ModifyGraph btLen=3 Label left "\\Z08Electrophoretic Mobility (µm·cm/Vs)" Label bottom "\\Z08Salt Concentration (mM)" SetAxis left -3,1 SetAxis bottom 0.001,1000 ErrorBars EM_KCl Y,wave=(EM_KCl_STDEV,EM_KCl_STDEV) ErrorBars EM_CaCl2 Y,wave=(EM_CaCl2_STDEV,EM_CaCl2_STDEV) ErrorBars EM_LaCl3 Y,wave=(EM_LaCl3_STDEV,EM_LaCl3_STDEV) Legend/C/N=text0/J/F=0/M/A=MC/X=-45.00/Y=60.00 "\\Z08\\s(EM_KCl)KCl\r\\s(EM_CaCl2)CaCl2\r\\s(EM_LaCl3)LaCl3" EndMacro Window Graph0() : Graph PauseUpdate; Silent 1 // building window... Display /W=(210,126.5,319.5,236) fit_EM_NaCl vs fitX_EM_NaCl as "HM_EM" AppendToGraph fit_EM_KCl vs fitX_EM_KCl AppendToGraph fit_EM_CsCl vs fitX_EM_CsCl AppendToGraph EM_NaCl vs EM_NaCl_Conc_mM AppendToGraph EM_KCl vs EM_KCl_Conc_mM AppendToGraph EM_CsCl vs EM_CsCl_Conc_mM ModifyGraph margin(left)=30,margin(bottom)=30,margin(top)=5,margin(right)=5,width=75 ModifyGraph height=75 ModifyGraph mode(EM_NaCl)=3,mode(EM_KCl)=3,mode(EM_CsCl)=3 ModifyGraph marker(EM_NaCl)=16,marker(EM_KCl)=19,marker(EM_CsCl)=17 ModifyGraph rgb(fit_EM_NaCl)=(59110,12850,15163),rgb(fit_EM_KCl)=(12079,16448,21074) ModifyGraph rgb(fit_EM_CsCl)=(31868,46774,34181),rgb(EM_NaCl)=(59110,12850,15163) ModifyGraph rgb(EM_KCl)=(12079,16448,21074),rgb(EM_CsCl)=(31868,46774,34181) ModifyGraph msize(EM_NaCl)=2,msize(EM_KCl)=2,msize(EM_CsCl)=2 ModifyGraph useMrkStrokeRGB(EM_NaCl)=1,useMrkStrokeRGB(EM_KCl)=1,useMrkStrokeRGB(EM_CsCl)=1 ModifyGraph log(bottom)=1 ModifyGraph mirror=2 ModifyGraph fSize=8 ModifyGraph btLen=3 Label left "\\Z08Electrophoretic Mobility (µm·cm/Vs)" Label bottom "\\Z08Salt Concentration (mM)" SetAxis left -3,1 SetAxis bottom 0.5,2000 ErrorBars EM_NaCl Y,wave=(EM_NaCl_STDEV,EM_NaCl_STDEV) ErrorBars EM_KCl Y,wave=(EM_KCl_STDEV,EM_KCl_STDEV) ErrorBars EM_CsCl Y,wave=(EM_CsCl_STDEV,EM_CsCl_STDEV) Legend/C/N=text0/J/F=0/M/A=MC/X=29.00/Y=-31.00 "\\Z08\\s(EM_NaCl)NaCl\r\\s(EM_KCl)KCl\r\\s(EM_CsCl)CsCl" EndMacro Window Table2() : Table PauseUpdate; Silent 1 // building window... Edit/W=(-74.25,315.5,350.25,529.25) w_KCl_Conc_mM,w_KCl,w_NaCl_Conc_mM,w_NaCl,w_CsCl_Conc_mM as "HM_w" AppendToTable w_CsCl ModifyTable format(Point)=1 EndMacro Window Table3() : Table PauseUpdate; Silent 1 // building window... Edit/W=(267,243.5,681,458.75) w_CaCl2_Conc_mM,w_CaCl2,w_LaCl3_Conc_mM,w_LaCl3 as "SH_w" ModifyTable format(Point)=1,width(w_CaCl2_Conc_mM)=95,width(w_CaCl2)=63,width(w_LaCl3_Conc_mM)=92 EndMacro Window Table1() : Table PauseUpdate; Silent 1 // building window... Edit/W=(33.75,65.75,710.25,292.25) EM_CaCl2_Conc_mM,EM_CaCl2,EM_CaCl2_STDEV,EM_LaCl3_Conc_mM as "SH_EM" AppendToTable EM_LaCl3,EM_LaCl3_STDEV ModifyTable format(Point)=1,width(EM_CaCl2_STDEV)=89,width(EM_LaCl3_Conc_mM)=101 EndMacro Window Table0() : Table PauseUpdate; Silent 1 // building window... Edit/W=(-13.5,80,912,306.5) EM_NaCl_Conc_mM,EM_NaCl,EM_NaCl_STDEV,EM_KCl_Conc_mM as "HM_EM" AppendToTable EM_KCl,EM_KCl_STDEV,EM_CsCl_Conc_mM,EM_CsCl,EM_CsCl_STDEV ModifyTable format(Point)=1,width(EM_NaCl_Conc_mM)=98,width(EM_NaCl)=65 EndMacro #pragma TextEncoding = "UTF-8" #pragma rtGlobals=3 // Use modern global access method and strict wave access #pragma DefaultTab={3,20,4} // Set default tab width in Igor Pro 9 and later Function CCC(w,c) : FitFunc Wave w Variable c //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ f(c) = 1+(CCC/(1/2*(c*a+c*z^2)))^(-Beta) //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ c //CurveFitDialog/ Coefficients 4 //CurveFitDialog/ w[0] = CCC //CurveFitDialog/ w[1] = Beta //CurveFitDialog/ w[2] = a //CurveFitDialog/ w[3] = z return 1+(w[0]/(1/2*(c*w[2]+c*w[3]^2)))^(-w[1]) End Function sigma(w,c) : FitFunc Wave w Variable c //CurveFitDialog/ These comments were created by the Curve Fitting dialog. Altering them will //CurveFitDialog/ make the function less convenient to work with in the Curve Fitting dialog. //CurveFitDialog/ Equation: //CurveFitDialog/ f(c) = (sigma/eta*(eps*eps0*kb*T/(2*Na*e^2*1/2*(c*a+c*z^2)))^(1/2))*10^8 //CurveFitDialog/ End of Equation //CurveFitDialog/ Independent Variables 1 //CurveFitDialog/ c //CurveFitDialog/ Coefficients 10 //CurveFitDialog/ w[0] = sigma //CurveFitDialog/ w[1] = eps0 //CurveFitDialog/ w[2] = eps //CurveFitDialog/ w[3] = kb //CurveFitDialog/ w[4] = T //CurveFitDialog/ w[5] = e //CurveFitDialog/ w[6] = Na //CurveFitDialog/ w[7] = eta //CurveFitDialog/ w[8] = a //CurveFitDialog/ w[9] = z return (w[0]/w[7]*(w[2]*w[1]*w[3]*w[4]/(2*w[6]*w[5]^2*1/2*(c*w[8]+c*w[9]^2)))^(1/2))*10^8 End