GENERAL CHOICE OF NON-LINEAR REGRESSION FUNCTIONS FOR THE APPROXIMATION OF VARIOUS PHYSICO-CHEMICAL CONSTANTS WITHIN SERIES OF HOMOLOGUES

Igor G. Zenkevich1, Balázs Kránicz2

1Chemical Research Institute of St. Petersburg State University,
Universitetsky pr., 2, St. Petersburg 198504, Russia; E-mail igor@IZ6246.spb.edu
2University of Veszprem, Department of Image Processing and Neurocomputing,
Egyetem u., 10, P.O.Box 158, H-8200, Veszprem, Hungary; E-mail kraniczb@almos.vein.hu

The general method of the choice of optimal regression functions for the approximation of various physico-chemical constants of organic compounds can be based on the selection of best function f(nC) not for their real values, but for their numerical derivatives fn(nC) of different order (n) followed by multi-step integration of these functions. This approach was proposed first for boiling points of homologues with f''(nC) = a/nC, that gives the target equation Tb = a log nC + b nC log nC + c [ 1,2] . More precise choice of approximating function for n-order derivatives permits us to generalize this method for other properties.

The following formula determines the numerical derivatives of any equidistant data set: f''= (fk-1 + fk+1 – 2fk) / h2, where h denotes the step between two neighboring data points (nC = 1). The regression functioncan be fit onto the data representing the second derivatives of reciprocal boiling points (x = 1/Tb) or absolute values of relative densities (d420) and refractive indices (nD20). After twice integrating this function we get:

(1)
Using another fitting procedure the parameters d and e of this function can be determined. It is noteworthy that i. the parameter d seems to be neglectable, that corresponds to the existence of limiting theoretical values of physico-chemical constants at
nC ®  , namely 1/Tb® 0, d420®0.857± 0.008, nD20 ®1.475± 0.003 [ 3] and ii. surprisingly the values of parameter c for various properties of different organic compounds are quite close to the negative Euler-number, i.e. - 2.71828… (!).
The table illustrates the precision of the different properties (P) approximation by method proposed.

Table. Some results (partially) of boiling points, relative densities,
and refractive indices of n-alkylbenzenes approximation with eq. (1)

Compound
MW
Tb, 0C
|Tb-Tb,precalc|
d420
d420,precalc
nD20
nD20,precalc
Toluene
92
110.62
0.15
0.8669
Eliminated
1.49693
Eliminated
Ethylbenzene
106
136.19
0.24
0.8670
Eliminated
1.49588
1.49583
Propylbenzene
120
159.22
0.93
0.8620
0.8621
1.49202
1.49215
Butylbenzene
134
183.27
0.13
0.8601
0.8599
1.48979
1.48965
Pentylbenzene
148
205.4
0.38
0.8585
0.8585
1.48780
1.48784
Hexylbenzene
162
226.1
0.27
0.8575
0.8575
1.48640
1.48647
. . . . . 
. . .
. . .
. . . . .
. . .
. . .
. . . .
. . . .
Heptadecylbenzene
316
397
0.09
0.8546
0.8546
1.48110
1.48106
Octadecylbenzene
330
408
0.27
0.8546
0.8546
1.48090
1.48089
Nonadecylbenzene
344
419
0.17
0.8545
0.8546
1.48070
1.48075
Eicosylbenzene
358
429
0.21
0.8545
0.8546
1.48050
1.48063
Average differences |Pexperim - Pprecalc|
0.3 K
0.00006
0.00006

References:
1. Zenkevich I.G. Zh. Phys. Khim. (Rus). 72 (1998) 1286-1291.
2. Zenkevich I.G. Proc. 20th Int. Symp. on Capil. Chromatogr. Italy, 1998. Rep. A.03 (CD-ROM).
3. Ioffe B.V., Zenkevich I.G. Zh. Phys. Khim. (Rus). 74 (2000) 2101-2106.