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INTRODUCTION 
 

 

 

Full details on the reactivity of 1,2,4,5-tetrazine as 4π component in 
inverse-type Diels-Alder reactions, including kinetic data, are reported 
[1]. Donor-substituted alkynes, alkenes, donor-substituted and 
unsubstituted cycloalkenes, ketene acetals and aminals, as well as several 
cyclic enol ethers were used as dienophiles in these investigations. A 
number of 4-mono- and 4,5-disubstituted pyridazines can easily be 
obtained by this method. As shown for a large number of open-chain and 
cyclic dienophiles, 1,2,4,5-tetrazine can be used as an electron-poor diene 
in inverse-type Diels-Alder reactions to yield a great variety of 
pyridazine derivatives not easily accessible by other synthetic methods:  
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The rate constants obtained by extensive kinetic measurements lead to 

quantitative rules for the influence of steric and electronic substituent 

effects in the dienophile. The results obtained using 1,2,4,5-tetrazine as 

diene can, in principle, be applied to other tetrazines. To plan organic 

synthesis reliably, the understanding and prediction of the rate of 

these processes are of worthwhile goals  



Table 1.Dienophiles 

 
ID pk STRUCTURE  ID pk STRUCTURE  ID pk STRUCTURE 

 1 

-6  

 

 

 

10 

-0.54  

 

 

 

9 

1.74  

 

 

   

2 

0.77  

 

 

 

11 

-4.33  

 

 

 

18 

-1.16  

 

 

   

3 

-4.7  

 

 

 

12 

1.77  

 

 

 

19 

-6.13  
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0.77  

 

 

 

13 

-4.83  

 

 

 

20 

-5.83  
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-0.46  

 
 

 

14 

-1.08  
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-4.79  

 

 

   

6 

0.16   

15 

-6.33  
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-2.08  

 

 

   

7 

-0.17  

 

 

 

16 

-1.1  
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0.61  
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-3.34  
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-1.91  
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-3.33  
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25 

-3.55  
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-0.24  
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-2.44  
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1.01  
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-0.44  

 

 

 

35 

1.78  
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1.66  
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-2.64  
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-1.85  
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Manually                               Automatically
- HOMO, LUMO, charges    - molecular fields, WHIM, holograms, fingerpints etc.
  momentums etc.    
- spectra, logP, logKa, MR, bp, mp, MW, density etc. 
                     
 

                                 
 - Semi-empirical or              - Molecular mechanics       
   HF for small molecules
-  MM for macromolcules

Multivariate modelling  in QSAR-QSPR

Few                                     Many 
(traditional QSAR)                   (3D QSAR, HQSAR, Fingerprints, Smiles etc.)

Independent
variables

descriptors

Selection of
descriptors

-theoretical

- experimental

 Molecular    
  modelling

Quality of dependent
variables 
(biological data)

replications

1
Calculating 
variance of 

biological data

2
y

errors of 
biological data 

are available

3

n

Creating 
weight vector

4

Multivariate 
data 

analysis

5

y

n

Biological knowledge



3D QSAR-QSPR

Invariant to roto-
-translation

6

n
y

WHIM
EVA

Jurs' desc.
3Dnet
etc.

7

Alignment

9

along the 
putative host 

structure

10

DISCO, 
Field Fit,
APEX 3D

etc.

11

"manual" "automatic"

CoMFA, CoMSIA, MFA, 
GRID/GOLPE
G-WHIM etc.

12
in vivo data

13

in vitro guest-host interactions

14



 

DESCRIPTORS, VARIABLES 

 

Dependent variable: 

• Negative logarithm of rate constant (pk)  

 

Independent variables: 

• Sybyl‘s EVA descriptors [2] 

• Descriptors of 3Dnet [3] 

 

 

 

MODEL BUILDING METHODS 

 

• Partial Least Squares (PLS) regression for EVA and 

• Artificial Neural Network (ANN) regression for 3Dnet 

descriptors (variable selection was performed by ANN, too). 

• For comparison the percent relative prediction error (Rel. Err. ) 

were used as a measure of predictive ability[13]: 



 

 

 

Re . .% * 
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l Err 
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i 

= 
− 

100 

 (2) 

 

where n equals to the number of objects in the training or in the 

prediction sets, yi and iŷ  refer to the measured and estimated 

values of the property for the object i, respectively. This measure 

were used as a least - worse alternative being the real degrees of 

freedom for PLS and ANN are not known [14].  

 

The validation of results was done by using a prediction set (7 

elements). First Hierarchical Cluster Analysis (HLC) of Sybyl 

was performed on EVA descriptors, and then the prediction set 

was chosen by experts including all clusters and covering a wide 

range of descriptors and including extremes, as well as.



Sybyl’s EVA Descriptors 

The EVA descriptor [4-10] is derived from fundamental IR and Raman range 
molecular vibrational frequencies. EVA is sensitive to 3-D structure, but has an 
advantage over field-based 3-D QSAR methods inasmuch as it is invariant to both 
translation and rotation of the structures concerned and thus structural 
superposition is not required pharmacophore. This reduced sensitivity is a 
consequence of the use of a Gaussian smearing function to develop the descriptor 
(as described below) and as a result EVA might be described as a '2.5-D' descriptor. 

Once determined, from whatever source, the set of vibrational wave numbers (vwn) 
for a given structure is projected onto a linear bounded frequency scale (BFS) 
typically covering a range from 1-4 000 cm-1. The use of this range means that all 
fundamental vibrational normal modes are included in the analysis, should a vwn 
exceed 4 000 cm-1 then either the BFS can be extended or all vwns from all 
molecules can be scaled according to scale factors Next, a Gaussian kernel of fixed 
standard deviation ( σ) is placed over each and every frequency value. The BFS is 
then sampled at fixed increments of L cm-1 and the value of the resulting EVA 
descriptor, EVA(x), at each sample point, x, is the sum of the amplitudes of the 
overlaid kernels at that point: 
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where fi; is the ith normal mode frequency of the compound concerned. This 
procedure is repeated for each dataset compound and then combined to provide a 
matrix with M rows (compounds) and 4000/L (columns) descriptor variables. 
Typically, a descriptor set has been derived using a σ of 10 cm-1 and an L of 5 cm-1 
giving 800 descriptor variables. Thus, for a QSAR dataset of typical size the 
number of variables is very much larger than M and a method such as Partial 
Least Squares (PLS) regression in conjunction with cross-validation is required 
to provide a robust regression analysis. As such, the results obtained with EVA 
QSAR are usually dependent upon the chosen kernel width (σ) since this parameter 
determines whether or not, and the extent to which, proximal kernels overlap. 
 
Consider, for example, the pyrazole trifluorotoluidide ether [11] shown below. The 
molecule's 136 normal modes were calculated in MOPAC using AM1; those falling 
between 1200 and 1500 cm-1 are shown as the line spectrum at the top. The bottom 



of the figure shows the profile obtained by summing across all 136 Gaussians at 
each frequency in this range. 
 

 
 
 
Small peaks in the profile arise from relatively isolated normal modes, such as the 
one at 1242 cm-1 (peak A). Large peaks result when several normal modes are 
separated by less than 2 σ from each other, as occurs near 1390 cm-1 (peak B). 



The input descriptors used in 3Dnet calculations [12]:  
 

Molecular Mass 
Dipole Moment 
Polarizability 
Degree of Freedom 
Double Bonds Equivalent 
Lipophilicity 
Hildebrand Solubility Parameter 
Electrostatic Acidity & Basicity 
Electrostatic Total Acidity & Basicity 
Wiener, Randic, Bodor Indices 
Minimum, maximum average of ElectroStatic Potential (ESP) 
Minimum, maximum average of Molecular Lipophilicity Potential (MLP) 
 
WHIM-descriptors (Moments of spatial distribution of atomic values) 
- Mass 
- Position 
- Van der Waals 
- Electronegativity 
- Polarizability 
- Electrotopological Index 
- Lipophilicity 
 
Autocorrelation Histograms 
- Local Charge 
- Van der Waals Volume 
- Lipophilicity contribution 
- Polarizability contribution 
- pI function 
- Electrotopological Index 
 
Quantum chemical descriptors: 

− AM1 heat of formation 
− AM1 HOMO & LUMO 
− 6-31 G* energy 
− 6-31 G* HOMO, HOMO-1 , HOMO-2 
- 6-31 G* LUMO, LUMO+1, LUMO+2 





Results 
 

Variables selected by 3Dnet:  

SORTED SIGNIFICANCE OF STANDALONE_INPUTS [%] 

 

GRAVIT_INDEX        100.00  
MIN_OF_MLP     94.16   
GLOBULARITY       87.00   
AVR_OF_ESP    73.09   
K_VDW (WHIM)           64.59   
AVR_OF_MLP     52.85   
K_LIPO (WHIM)           52.33   
K_ETPI (WHIM)           45.13   
MIN_OF_ESP     42.21   
MAX_OF_MLP            34.96   
QTOT_BODOR            33.16   
K_EN (WHIM)    30.56   
HOMO-1      26.83   
K_MASS (WHIM)           25.59   
QN_BODOR            25.33   
DOUBLE_BOND_EQUIV  19.89   
MAX_OF_ESP     16.17   
DIPOLE_MOMENT    11.35   
LIPOPHILICITY             7.96 



 
 

 



 

 

 

 



 

 

 



Regression  

 

Training set 

ID pk_exp pk_3Dnet Rel.Err. pk_EVA Rel.Err 

1 -6.000 -5.433 0.095 -5.901 0.017 

2 0.772 0.500 0.352 0.78 0.010 

4 0.775 1.392 0.796 0.915 0.181 

5 -0.464 -0.398 0.142 -0.483 0.041 

6 0.163 0.156 0.042 0.32 0.963 

8 -3.337 -3.488 0.045 -3.136 0.060 

9 1.745 1.388 0.204 1.737 0.004 

10 -0.537 -0.418 0.221 -0.625 0.165 

11 -4.335 -5.412 0.248 -4.091 0.056 

12 1.775 1.276 0.281 1.806 0.018 

14 -1.076 -0.718 0.332 -0.944 0.122 

15 -6.330 -5.335 0.157 -6.269 0.010 

16 -1.100 -2.256 1.051 -1.105 0.004 

18 -1.158 -1.296 0.119 -1.249 0.078 

19 -6.134 -5.397 0.120 -6.139 0.001 

20 -5.833 -5.551 0.048 -5.872 0.007 

21 -4.788 -4.798 0.002 -4.731 0.012 

22 -2.079 -1.715 0.175 -2.129 0.024 

23 0.607 0.667 0.098 0.509 0.162 

24 -3.332 -2.508 0.247 -2.753 0.174 

25 -3.545 -3.442 0.029 -3.296 0.070 

26 -2.441 -2.476 0.015 -2.407 0.014 

28 -2.555 -2.456 0.039 -2.417 0.054 

30 -1.382 -1.532 0.109 -1.449 0.048 

33 -0.243 0.068 1.281 -0.061 0.749 

34 1.013 0.958 0.055 0.917 0.095 

36 -3.599 -5.548 0.542 -3.532 0.019 

37 -2.669 -2.605 0.024 -2.697 0.010 

Rel.Err. %   25  11 

 



Prediction set 

 

ID pk_exp pk_3DNet Rel.Err. pk_EVA Rel.Err 

3 -4.701 -5.311 0.130 -3.948 0.160 

7 -0.167 -0.303 0.808 -0.191 0.142 

17 -1.905 -2.467 0.295 -1.766 0.073 

29 -2.760 -2.449 0.113 -2.157 0.218 

32 -1.863 -1.894 0.017 -2.059 0.105 

35 1.656 1.310 0.209 1.031 0.377 

38 -1.848 -1.338 0.276 -0.813 0.560 

Rel.Err. %   26.4  23.4 

 

 

 

Optimal models: 

 

3Dnet 

19 input, 4 hidden, 1 output nodes 

 

EVA 

L=20 cm-1, σ=20 cm-1, 11 latent variables 



Kinetic Results 
 
 
[4+2] Cycloadditions of 1,2,4,5-tetrazines are LUMOdiene- HOMOphi1-controlled 
reactions. [1] For a particular diene, the reactivity change of the system parallels 
the HOMO energy of the dienophiles. Donor substituents raise the HOMO 
energy of the dienophiles and by decreasing the LUMOdiene-HOMOphi1 gap, 
increase the rate constants of the cycloaddition step. In principle, any exchange 
of hydrogen in the dienophile for a larger substituent has an impeding steric 
effect. So, as a net result, the substitution of hydrogen by a substituent in the 
dienophile component, depending on its electron-donating power, can lead to an 
increase or decrease of the dienophile's reactivity. 
 
All cycloadditions studied kinetically in this contribution cleanly follow a 
second-order rate law between less than 10 % and mostly more than 90% 
conversion. The second-order rate constants illustrate the tremendous influence 
of structural variations in the dienophile component. As was shown [1] these 
substituent effects on the cycloaddition rate of  are typical for other tetrazine 
cycloadditions.  
 



Discussion of 3Dnet regression: 

 

Important variables depends on  

• the non-directional mass and size   

• minimal, maximal and average values of molecular electrostatic as 

well as lipophilic potencials 

• HOMO-1 

which correlate the experimental observations [1] 

 

Unfortunately experimental errors of the rate constants are not 

know. Model might be improved by split of the data set. 

 



 

Discussion of EVA regression: 
Discriminating power: fraction of the variation in intensity at each frequency which contributes to the 

model.

 



 

 
 
Max field:  at each frequency the highest intensity in EVA profiles used to derive the model. 
 
Most discriminating frequencies show that the stretching vibrations of double bonds  and the 
single bonds attaching to this are the most important ones.



Dienophile 1 
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Conclusions 
 
 
As shown for a large number of open-chain and cyclic dienophiles, 1,2,4,5-
tetrazine [1] can be used as an electron-poor diene in inverse-type Diels-Alder 
reactions to yield a great variety of pyridazine derivatives not easily accessible 
by other synthetic methods.  
 
The rate constants obtained by extensive kinetic measurements lead to 
quantitative rules for the influence of steric and electronic substituent effects in 
the dienophile.  
 
The EVA and 3Dnet descriptors configurations, are comparable in prediction 
Rate effects can hence be easily predicted for synthetic 
purposes in the tetrazine field. 
 
 
Although experimental IR spectra might not be optimal for QSAR [15] but EVA 
descriptors seem to be as applicable as anything else
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