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INTRODUCTION

Full detaills on the reactivity of 1,2,4,5-tetrazine as 4p component in
Inverse-type Diels-Alder reactions, including kinetic data, are reported
[1]. Donor-substituted akynes, akenes, donor-substituted and
unsubstituted cycloalkenes, ketene acetals and aminals, as well as several
cyclic enol ethers were used as dienophiles in these investigations. A
number of 4-mono- and 4,5-disubstituted pyridazines can easily be
obtained by this method. As shown for a large number of open-chain and
cyclic dienophiles, 1,2,4,5-tetrazine can be used as an electron-poor diene
In inverse-type DielsAlder reactions to yield a great variety of
pyridazine derivatives not easily accessible by other synthetic methods:
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The rate constants obtained by extensive kinetic measurements lead to
guantitative rules for the influence of steric and eectronic substituent
effects in the dienophile. The results obtained using 1,2,4,5-tetrazine as
diene can, in principle, be applied to other tetrazines. To plan organic
synthesis reliably, the understanding and prediction of the rate of

these processes ar e of worthwhile goals
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Multivariate modelling in QSAR-QSPR
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DESCRIPTORS, VARIABLES

Dependent variable:

- Negative logarithm of rate constant (pk)

|ndependent variables.
- Sybyl's EV A descriptors [2]
- Descriptors of 3Dnet [3]

MODEL BUILDING METHODS

- Partial Least Squares (PLS) regression for EVA and

- Artificial Neural Network (ANN) regression for 3Dnet
descriptors (variable selection was performed by ANN, too).

- For comparison the percent relative prediction error (Rel. Err.)

were used as a measure of predictive ability[13]:



Y - Y,
Y

Rel .Err.% =100*
2

where n equals to the number of objects in the training or in the

prediction sets, y; and Vi refer to the measured and estimated
values of the property for the object i, respectively. This measure
were used as a least - worse alternative being the real degrees of
freedom for PLS and ANN are not known [14].

The validation of results was done by using a prediction set (7
elements). First Hierarchical Cluster Analysis (HLC) of Sybyl
was performed on EV A descriptors, and then the prediction set
was chosen by expertsincluding all clusters and covering awide

range of descriptors and including extremes, as well as.



Sybyl’sEV A Descriptors

The EVA descriptor [4-10] is derived from fundamental IR and Raman range
molecular vibrational frequencies. EVA is sensitive to 3-D structure, but has an
advantage over field-based 3-D QSAR methods inasmuch as it is invariant to both
translation and rotation of the structures concerned and thus structural
superposition is not required pharmacophore. This reduced sensitivity is a
conseguence of the use of a Gaussian smearing function to develop the descriptor
(as described below) and as aresult EVA might be described as a'2.5-D' descriptor.

Once determined, from whatever source, the set of vibrational wave numbers (vwn)
for a given structure is projected onto a linear bounded frequency scale (BFS)
typically covering a range from 1-4 000 cm™. The use of this range means that all
fundamental vibrational normal modes are included in the analysis, should a vwn
exceed 4 000 cm™ then either the BFS can be extended or all vwns from all
molecules can be scaled according to scale factors Next, a Gaussian kernel of fixed
standard deviation ( s) is placed over each and every frequency value. The BFSis
then sampled at fixed increments of L cm™ and the value of the resulting EVA
descriptor, EVA(X), at each sample point, X, is the sum of the amplitudes of the
overlaid kernels at that point:
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where f;; is the ith norma mode frequency of the compound concerned. This
procedure is repeated for each dataset compound and then combined to provide a
matrix with M rows (compounds) and 4000/L (columns) descriptor variables.
Typically, adescriptor set has been derived using as of 10 cm™ and an L of 5cm™
giving 800 descriptor variables. Thus, for a QSAR dataset of typical size the
number of variables is very much larger than M and a method such as Partial
Least Squares (PLS) regression in conjunction with cross-validation is required
to provide a robust regression analysis. As such, the results obtained with EVA
QSAR are usually dependent upon the chosen kernel width (s) since this parameter
determines whether or not, and the extent to which, proximal kernels overlap.

exp[(x- f)/2s?] (1)

Consider, for example, the pyrazole trifluorotoluidide ether [11] shown below. The
molecule's 136 normal modes were calculated in MOPAC using AM 1; those falling
between 1200 and 1500 cm™ are shown as the line spectrum at the top. The bottom



of the figure shows the profile obtained by summing across all 136 Gaussians at

each frequency in this range.
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Small peaksin the profile arise from relatively isolated norma modes, such as the
one at 1242 cm™ (peak A). Large peaks result when several normal modes are
separated by lessthan 2 s from each other, as occurs near 1390 cm™ (peak B).



Theinput descriptorsused in 3Dnet calculations[12]:

Molecular Mass

Dipole Moment

Polarizability

Degree of Freedom

Double Bonds Equivalent

Lipophilicity

Hildebrand Solubility Parameter

Electrostatic Acidity & Basicity

Electrostatic Total Acidity & Basicity

Wiener, Randic, Bodor Indices

Minimum, maximum average of ElectroStatic Potential (ESP)
Minimum, maximum average of Molecular Lipophilicity Potential (MLP)

WHIM-descriptors (Moments of spatial distribution of atomic values)
- Mass

- Position

- Van der Waals

- Electronegativity

- Polarizability

- Electrotopological Index

- Lipophilicity

Autocorrelation Histograms
- Local Charge

- Van der Waals Volume

- Lipophilicity contribution
- Polarizability contribution
- pl function

- Electrotopological Index

Quantum chemical descriptors.
- AM1 heat of formation
- AM1HOMO & LUMO
- 6-31 G* energy
- 6-31 G* HOMO, HOMO-1 , HOMO-2
- 6-31 G* LUMO, LUMO+1, LUMO+2






Results

Variables selected by 3Dnet:
SORTED SIGNIFICANCE OF STANDALONE_INPUTS [%]

GRAVIT_INDEX 100.00
MIN_OF MLP 94.16
GLOBULARITY 87.00
AVR_OF ESP 73.09
K_VDW (WHIM) 64.59
AVR_OF MLP 52.85
K_LIPO (WHIM) 52.33
K_ETPI (WHIM) 45.13
MIN_OF ESP 42.21
MAX_OF MLP 34.96
QTOT_BODOR 33.16
K_EN (WHIM) 30.56
HOMO-1 26.83
K_MASS (WHIM) 25.59
QN_BODOR 25.33
DOUBLE_BOND_EQUIV 19.89
MAX_OF ESP 16.17
DIPOLE_ MOMENT 11.35

LIPOPHILICITY 7.96
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Regression

Training set
ID pk_exp pk_3Dnet Rel.Err. pk_EVA Rel.Err
1 -6.000 -5.433 0.095 -5.901 0.017
2 0.772 0.500 0.352 0.78 0.010
4 0.775 1.392 0.796 0.915 0.181
5 -0.464 -0.398 0.142 -0.483 0.041
6 0.163 0.156 0.042 0.32 0.963
8 -3.337 -3.488 0.045 -3.136 0.060
9 1.745 1.388 0.204 1.737 0.004
10 -0.537 -0.418 0.221 -0.625 0.165
11 -4.335 -5.412 0.248 -4.091 0.056
12 1.775 1.276 0.281 1.806 0.018
14 -1.076 -0.718 0.332 -0.944 0.122
15 -6.330 -5.335 0.157 -6.269 0.010
16 -1.100 -2.256 1.051 -1.105 0.004
18 -1.158 -1.296 0.119 -1.249 0.078
19 -6.134 -5.397 0.120 -6.139 0.001
20 -5.833 -5.551 0.048 -5.872 0.007
21 -4.788 -4.798 0.002 -4.731 0.012
22 -2.079 -1.715 0.175 -2.129 0.024
23 0.607 0.667 0.098 0.509 0.162
24 -3.332 -2.508 0.247 -2.753 0.174
25 -3.545 -3.442 0.029 -3.296 0.070
26 -2.441 -2.476 0.015 -2.407 0.014
28 -2.555 -2.456 0.039 -2.417 0.054
30 -1.382 -1.532 0.109 -1.449 0.048
33 -0.243 0.068 1.281 -0.061 0.749
34 1.013 0.958 0.055 0.917 0.095
36 -3.599 -5.548 0.542 -3.532 0.019
37 -2.669 -2.605 0.024 -2.697 0.010
Rel.Err. % 25 11




Prediction set

ID pk_exp pk_3DNet Rel.Err. pk_EVA Rel.Err

-4701 -5311 0.130 -3.948 0.160
7 -0.167 -0.303 0.808 -0.191 0.142
17 -1.905 -2467 0295 -1.766 0.073
29 -2.7/60 -2449 0113 -2.157 0.218
32 -1.863 -1.894 0.017 -2.059 0.105
35 1656 1310 0.209 1031 0.377
38 -1.848 -1.338 0.276 -0.813 0.560

Rel.Err. % 26.4 234

Optimal models:

3Dnet
19 input, 4 hidden, 1 output nodes

EVA
L=20 cm?, s=20 cm?, 11 latent variables



Kinetic Results

[4+2] Cycloadditions of 1,2,4,5-tetrazines are LUM Ogjegne- HOM O,1is-controlled
reactions. [1] For a particular diene, the reactivity change of the system parallels
the HOMO energy of the dienophiles. Donor substituents raise the HOMO
energy of the dienophiles and by decreasing the LUMOgiegne-HOMOphin gap,
Increase the rate constants of the cycloaddition step. In principle, any exchange
of hydrogen in the dienophile for a larger substituent has an impeding steric
effect. So, as a net result, the substitution of hydrogen by a substituent in the
dienophile component, depending on its electron-donating power, can lead to an
Increase or decrease of the dienophile's reactivity.

All cycloadditions studied kinetically in this contribution cleanly follow a
second-order rate law between less than 10 % and mostly more than 90%
conversion. The second-order rate constants illustrate the tremendous influence
of structural variations in the dienophile component. As was shown [1] these
substituent effects on the cycloaddition rate of are typical for other tetrazine
cycloadditions.



Discussion of 3Dnet regression:

|mportant variables depends on
- the non-directional mass and size

- minimal, maximal and average values of molecular electrostatic as
well as lipophilic potencias
- HOMO-1

which correlate the experimental observations[1]

Unfortunately experimental errorsof therate constants are not

know. Model might be improved by split of the data set.



Discussion of EVA regression:

Discriminating power: fraction of the variation in intensity at each frequency which contributes to the

moded!.
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0.000 to 10.000

90,000 to 100000

Max field: at each frequency the highest intensity in EV A profiles used to derive the model.

Most discriminating frequencies show that the stretching vibrations of double bonds and the
single bonds attaching to this are the most important ones.
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Conclusions

As shown for alarge number of open-chain and cyclic dienophiles, 1,2,4,5-
tetrazine [1] can be used as an electron-poor diene in inverse-type Diels-Alder
reactionsto yield agreat variety of pyridazine derivatives not easily accessible
by other synthetic methods.

The rate constants obtained by extensive kinetic measurements lead to
quantitative rules for the influence of steric and electronic substituent effectsin
the dienophile.

The EV A and 3Dnet descriptors configurations, are comparable in prediction
Rate effects can hence be easily predicted for synthetic
purposes in the tetrazine field.

Although experimental IR spectra might not be optimal for QSAR [15] but EVA
descriptors seem to be as applicable as anything else
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