PK-kvOńB–Hmimetypetext/x-wxmathmlPK-kvOŤf1SS format.txt This file contains a wxMaxima session in the .wxmx format. .wxmx files are .xml-based files contained in a .zip container like .odt or .docx files. After changing their name to end in .zip the .xml and eventual bitmap files inside them can be extracted using any .zip file viewer. The reason why part of a .wxmx file still might still seem to make sense in a ordinary text viewer is that the text portion of .wxmx by default isn't compressed: The text is typically small and compressing it would mean that changing a single character would (with a high probability) change big parts of the whole contents of the compressed .zip archive. Even if version control tools like git and svn that remember all changes that were ever made to a file can handle binary files compression would make the changed part of the file bigger and therefore seriously reduce the efficiency of version control wxMaxima can be downloaded from https://github.com/wxMaxima-developers/wxmaxima. It also is part of the windows installer for maxima (https://wxmaxima-developers.github.io/wxmaxima/). If a .wxmx file is broken but the content.xml portion of the file can still be viewed using an text editor just save the xml's text as "content.xml" and try to open it using a recent version of wxMaxima. If it is valid XML (the XML header is intact, all opened tags are closed again, the text is saved with the text encoding "UTF8 without BOM" and the few special characters XML requires this for are properly escaped) chances are high that wxMaxima will be able to recover all code and text from the XML file. PK-kvOZ=sý+_+_ content.xml A 88. Ă©s 89. pĂ©ldában használhatĂł fĂĽggvĂ©nydefinĂ­ciĂłk: fH4(cS,cB,Kd,Kv):= -log(find_root( H^3+(cB+Kd)*H^2-(Kv+Kd*cS)*H-Kd*Kv=0,H,0,cS+sqrt(Kv) ))/log(10.0); fH5(cS,cB,Kd):= -log(find_root( H^2+Kd*H-Kd*cS=0,H,0,cS ))/log(10.0); fH6(cS,cB,Kd):=-log(sqrt(Kd*cS))/log(10.0); A 88. pĂ©lda megoldása: wxplot2d([fH4(c,0,6.3e-5,1.74e-14),fH5(c,0,6.3e-5),fH6(c,0,6.3e-5)],[c,1e-10,0.3],logx, [style,[lines,2,black],[lines,1,blue],[lines,1,red]],[grid2d,true], [legend,"(4) pontos pH","(5) közelĂ­tĂ©s másodfokĂş egyenlettel","(6) gyökös közelĂ­tĂ©s"], [xlabel,"analitikai koncentráciĂł (M)"],[ylabel,"számolt pH-Ă©rtĂ©kek"]); A 89. pĂ©lda megoldása (egyszerűen Ă©s elegánsan is): fpprintprec:3$ wxplot2d([fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5), fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5)],[c,1e-10,0.3],logx, [style,[lines,2,blue],[lines,2,red]],[grid2d,true], [legend,"(4) – (5)","(4) – (6)"], [xlabel,"analitikai koncentráciĂł (M)"],[ylabel,"a pH számolt eltĂ©rĂ©se"]); results:matrix(["ΔpH",0.002,0.01,0.1,0.3],["c5/M",0,0,0,0],["c6/M",0,0,0,0]); "egyszerű:"; results[2][2]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.002,c,1e-14,1.0)$ results[3][2]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.002,c,1e-14,1.0)$ results[2][3]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.01,c,1e-14,1.0)$ results[3][3]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.01,c,1e-14,1.0)$ results[2][4]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.1,c,1e-14,1.0)$ results[3][4]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.1,c,1e-14,1.0)$ results[2][5]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.3,c,1e-14,1.0)$ results[3][5]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.3,c,1e-14,1.0)$ results; results:matrix(["ΔpH",0.002,0.01,0.1,0.3],["c5/M",0,0,0,0],["c6/M",0,0,0,0]); "elegáns:"; for i:2 thru 5 step 1 do ( results[2][i]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=results[1][i],c,1e-14,1.0), results[3][i]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=results[1][i],c,1e-14,1.0) )$ results; A 90. pĂ©lda megoldása (,[pdf_file,"outplot"] vagy terminal=pdf,file_name="outdraw",): load(implicit_plot);load(draw);ratprint:false$ wximplicit_plot([10^(-pc)=10^(-pH),10^(-pc)=10^(-pH)-1.74e-14/10^(-pH)],[pc,5,9],[pH,5,8], [style,[lines,1,blue],[lines,2,red]],[grid2d,true],[gnuplot_preamble,"set key top left"], [legend,"c=[H^+]","c=[H^+]–K_v/[H^+]"], [xlabel,"–log(c/M)"],[ylabel,"pH"]); wxdraw2d( grid=true, user_preamble="set key top left", xlabel = "–log(c/M)", ylabel = "pH", line_width=2, color=blue,key="c=[H^+]", implicit(10^(-pc)=10^(-pH),pc,5,10,pH,5,8), color=red,key="c=[H^+]–K_v/[H^+]", implicit(10^(-pc)=10^(-pH)-1.74e-14/10^(-pH),pc,5,10,pH,5,8)); A 91. Ă©s 92. pĂ©ldában használhatĂł fĂĽggvĂ©nydefinĂ­ciĂłk: pHprecise(c,Kv):=-log(find_root(c-H+Kv/H=0,H,1e-15,c+sqrt(Kv)))/log(10.0); pHapprox(c):=-log(c)/log(10.0); A 91. pĂ©lda megoldása: Kv:1.74e-14$fpprintprec:4$ cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.01,c,1e-14,1.0)$ sconcat("(a) ",pHprecise(cact,Kv),"-nál kisebb pH alatt."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.1,c,1e-14,1.0)$ sconcat("(b) ",pHprecise(cact,Kv),"-nál kisebb pH alatt."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=1.0,c,1e-14,1.0)$ sconcat("(c) ",pHprecise(cact,Kv),"-nĂ©l nagyobb pH-nál."); A 92. pĂ©lda megoldása: Kv:1.74e-14$fpprintprec:2$ cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.01,c,1e-14,1.0)$ sconcat("(a) ",cact," M-nál nagyobb analitikai koncentráciĂłknál."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.1,c,1e-14,1.0)$ sconcat("(b) ",cact," M-nál nagyobb analitikai koncentráciĂłknál."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=1.0,c,1e-14,1.0)$ sconcat("(c) ",cact," M-nál kisebb analitikai koncentráciĂłknál."); A 94. pĂ©lda megoldása: load(implicit_plot);ratprint:false$ Mrsalt:159.6086;Mrsaltwithwater:249.685; eq0:m/100=Ms/Msw*x/(58+x); solve(eq0,x); wxplot2d(58*Mrsaltwithwater*m/(100*Mrsalt-Mrsaltwithwater*m),[m,0,100],[y,1,1e4],logy, [style,[lines,2,blue]],[grid2d,true], [legend,""], [xlabel,"m%/%"],[ylabel,"hozzáadott kristályos sĂł tömege (g)"]); wximplicit_plot(m/100=Mrsalt/Mrsaltwithwater*x/(58+x),[m,0,100],[x,1,1e4],logy, [style,[lines,1,blue]],[grid2d,true],[gnuplot_preamble,"set key top left"], [legend,""], [xlabel,"m%/%"],[ylabel,"hozzáadott kristályos sĂł tömege (g)"]); wxdraw2d( grid=true, logy=true, xlabel = "m%/%", ylabel = "hozzáadott kristályos sĂł tömege (g)", color=blue,key="",line_width=2, implicit(m/100=Mrsalt/Mrsaltwithwater*x/(58+x),m,0,100,x,1,1e4)); A 95. pĂ©lda megoldása: eqHI:K=HI^2/(n-HI/2)/(0.3-HI/2); solve(eqHI,HI); define(fHI(K,n),rhs(%[1])); eqI2:K=(2*(0.3-I2))^2/(n-(0.3-I2))/I2; solve(eqI2,I2); define(fI2(K,n),rhs(%[2])); wxplot2d([fHI(0.871,n),fI2(0.71,n)],[n,0,40.0], [style,[lines,1,blue],[lines,1,red]],[grid2d,true],[gnuplot_preamble,"set key top left"], [legend,"HI","I_2"], [xlabel,"n(H_2) (mol)"],[ylabel,"aktuális anyagmennyisĂ©gek (mol)"]); K:0.871$ wxdraw2d( grid=true, xlabel="n(H_2) (mol)", ylabel="aktuális anyagmennyisĂ©gek (mol)", line_width=1, key = "HI", color=blue, implicit(eqHI,n,0,40,HI,0,0.6), key = "I_2", color=red, implicit(eqI2,n,0,40,I2,0,0.3)); A 95. pĂ©lda megoldása: kill(all)$ratprint:false$fpprintprec:0$ MrSO3:32.065+3*15.999;MrH2SO4:32.065+4*15.999+2*1.0079; float(solve([mSO3/MrSO3+(2.604-mSO3)/MrH2SO4=0.0651*0.9/2, mratio=mSO3/(2.604-mSO3)],[mratio,mSO3])); MrSO3:32.07+3*16.00;MrH2SO4:32.07+4*16.00+2*1.01; float(solve([mSO3/MrSO3+(2.604-mSO3)/MrH2SO4=0.0651*0.9/2, mratio=mSO3/(2.604-mSO3)],[mratio,mSO3])); MrSO3:32+3*16;MrH2SO4:32+4*16+2*1; float(solve([mSO3/MrSO3+(2.604-mSO3)/MrH2SO4=0.0651*0.9/2, mratio=mSO3/(2.604-mSO3)],[mratio,mSO3])); A 88. Ă©s 89. pĂ©ldában használhatĂł fĂĽggvĂ©nydefinĂ­ciĂłk: fH4(cS,cB,Kd,Kv):= -log(find_root( H^3+(cB+Kd)*H^2-(Kv+Kd*cS)*H-Kd*Kv=0,H,0,cS+sqrt(Kv) ))/log(10.0); fH5(cS,cB,Kd):= -log(find_root( H^2+Kd*H-Kd*cS=0,H,0,cS ))/log(10.0); fH6(cS,cB,Kd):=-log(sqrt(Kd*cS))/log(10.0); A 88. pĂ©lda megoldása: wxplot2d([fH4(c,0,6.3e-5,1.74e-14),fH5(c,0,6.3e-5),fH6(c,0,6.3e-5)],[c,1e-10,0.3],logx, [style,[lines,2,black],[lines,1,blue],[lines,1,red]],[grid2d,true], [legend,"(4) pontos pH","(5) közelĂ­tĂ©s másodfokĂş egyenlettel","(6) gyökös közelĂ­tĂ©s"], [xlabel,"analitikai koncentráciĂł (M)"],[ylabel,"számolt pH-Ă©rtĂ©kek"]); A 89. pĂ©lda megoldása (egyszerűen Ă©s elegánsan is): fpprintprec:3$ wxplot2d([fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5), fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5)],[c,1e-10,0.3],logx, [style,[lines,2,blue],[lines,2,red]],[grid2d,true], [legend,"(4) – (5)","(4) – (6)"], [xlabel,"analitikai koncentráciĂł (M)"],[ylabel,"a pH számolt eltĂ©rĂ©se"]); results:matrix(["ΔpH",0.002,0.01,0.1,0.3],["c5/M",0,0,0,0],["c6/M",0,0,0,0]); "egyszerű:"; results[2][2]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.002,c,1e-14,1.0)$ results[3][2]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.002,c,1e-14,1.0)$ results[2][3]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.01,c,1e-14,1.0)$ results[3][3]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.01,c,1e-14,1.0)$ results[2][4]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.1,c,1e-14,1.0)$ results[3][4]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.1,c,1e-14,1.0)$ results[2][5]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=0.3,c,1e-14,1.0)$ results[3][5]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=0.3,c,1e-14,1.0)$ results; results:matrix(["ΔpH",0.002,0.01,0.1,0.3],["c5/M",0,0,0,0],["c6/M",0,0,0,0]); "elegáns:"; for i:2 thru 5 step 1 do ( results[2][i]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH5(c,0,6.3e-5))=results[1][i],c,1e-14,1.0), results[3][i]:find_root(abs(fH4(c,0,6.3e-5,1.74e-14)-fH6(c,0,6.3e-5))=results[1][i],c,1e-14,1.0) )$ results; A 90. pĂ©lda megoldása (,[pdf_file,"outplot"] vagy terminal=pdf,file_name="outdraw",): load(implicit_plot);load(draw);ratprint:false$ wximplicit_plot([10^(-pc)=10^(-pH),10^(-pc)=10^(-pH)-1.74e-14/10^(-pH)],[pc,5,9],[pH,5,8], [style,[lines,1,blue],[lines,2,red]],[grid2d,true],[gnuplot_preamble,"set key top left"], [legend,"c=[H^+]","c=[H^+]–K_v/[H^+]"], [xlabel,"–log(c/M)"],[ylabel,"pH"]); wxdraw2d( grid=true, user_preamble="set key top left", xlabel = "–log(c/M)", ylabel = "pH", line_width=2, color=blue,key="c=[H^+]", implicit(10^(-pc)=10^(-pH),pc,5,10,pH,5,8), color=red,key="c=[H^+]–K_v/[H^+]", implicit(10^(-pc)=10^(-pH)-1.74e-14/10^(-pH),pc,5,10,pH,5,8)); A 91. Ă©s 92. pĂ©ldában használhatĂł fĂĽggvĂ©nydefinĂ­ciĂłk: pHprecise(c,Kv):=-log(find_root(c-H+Kv/H=0,H,1e-15,c+sqrt(Kv)))/log(10.0); pHapprox(c):=-log(c)/log(10.0); A 91. pĂ©lda megoldása: Kv:1.74e-14$fpprintprec:4$ cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.01,c,1e-14,1.0)$ sconcat("(a) ",pHprecise(cact,Kv),"-nál kisebb pH alatt."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.1,c,1e-14,1.0)$ sconcat("(b) ",pHprecise(cact,Kv),"-nál kisebb pH alatt."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=1.0,c,1e-14,1.0)$ sconcat("(c) ",pHprecise(cact,Kv),"-nĂ©l nagyobb pH-nál."); A 92. pĂ©lda megoldása: Kv:1.74e-14$fpprintprec:2$ cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.01,c,1e-14,1.0)$ sconcat("(a) ",cact," M-nál nagyobb analitikai koncentráciĂłknál."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=0.1,c,1e-14,1.0)$ sconcat("(b) ",cact," M-nál nagyobb analitikai koncentráciĂłknál."); cact:find_root(abs(pHprecise(c,Kv)-pHapprox(c))=1.0,c,1e-14,1.0)$ sconcat("(c) ",cact," M-nál kisebb analitikai koncentráciĂłknál."); A 94. pĂ©lda megoldása: load(implicit_plot);ratprint:false$ Mrsalt:159.6086;Mrsaltwithwater:249.685; eq0:m/100=Ms/Msw*x/(58+x); solve(eq0,x); wxplot2d(58*Mrsaltwithwater*m/(100*Mrsalt-Mrsaltwithwater*m),[m,0,100],[y,1,1e4],logy, [style,[lines,2,blue]],[grid2d,true], [legend,""], [xlabel,"m%/%"],[ylabel,"hozzáadott kristályos sĂł tömege (g)"]); wximplicit_plot(m/100=Mrsalt/Mrsaltwithwater*x/(58+x),[m,0,100],[x,1,1e4],logy, [style,[lines,1,blue]],[grid2d,true],[gnuplot_preamble,"set key top left"], [legend,""], [xlabel,"m%/%"],[ylabel,"hozzáadott kristályos sĂł tömege (g)"]); wxdraw2d( grid=true, logy=true, xlabel = "m%/%", ylabel = "hozzáadott kristályos sĂł tömege (g)", color=blue,key="",line_width=2, implicit(m/100=Mrsalt/Mrsaltwithwater*x/(58+x),m,0,100,x,1,1e4)); A 95. pĂ©lda megoldása: eqHI:K=HI^2/(n-HI/2)/(0.3-HI/2); solve(eqHI,HI); define(fHI(K,n),rhs(%[1])); eqI2:K=(2*(0.3-I2))^2/(n-(0.3-I2))/I2; solve(eqI2,I2); define(fI2(K,n),rhs(%[2])); wxplot2d([fHI(0.871,n),fI2(0.71,n)],[n,0,40.0], [style,[lines,1,blue],[lines,1,red]],[grid2d,true],[gnuplot_preamble,"set key top left"], [legend,"HI","I_2"], [xlabel,"n(H_2) (mol)"],[ylabel,"aktuális anyagmennyisĂ©gek (mol)"]); K:0.871$ wxdraw2d( grid=true, xlabel="n(H_2) (mol)", ylabel="aktuális anyagmennyisĂ©gek (mol)", line_width=1, key = "HI", color=blue, implicit(eqHI,n,0,40,HI,0,0.6), key = "I_2", color=red, implicit(eqI2,n,0,40,I2,0,0.3)); A 96. pĂ©lda megoldása (m tömeget jelöl): kill(all)$ratprint:false$fpprintprec:0$ MrSO3:32.065+3*15.999;MrH2SO4:32.065+4*15.999+2*1.0079; float(solve([mSO3/MrSO3+(2.604-mSO3)/MrH2SO4=0.0651*0.9/2, mratio=mSO3/(2.604-mSO3)],[mratio,mSO3])); MrSO3:32.07+3*16.00;MrH2SO4:32.07+4*16.00+2*1.01; float(solve([mSO3/MrSO3+(2.604-mSO3)/MrH2SO4=0.0651*0.9/2, mratio=mSO3/(2.604-mSO3)],[mratio,mSO3])); MrSO3:32+3*16;MrH2SO4:32+4*16+2*1; float(solve([mSO3/MrSO3+(2.604-mSO3)/MrH2SO4=0.0651*0.9/2, mratio=mSO3/(2.604-mSO3)],[mratio,mSO3])); A 97. pĂ©lda megoldása (n anyagmennyisĂ©get jelöl): kill(all)$ratprint:false$fpprintprec:0$ F:96485.0$ ArCu:63.546;ArNi:58.693; float(solve([ArCu*nCu+ArNi*(345/2/F-nCu)=0.111,mpNi=100.0-mpCu, mpCu=100*ArCu*nCu/0.111],[nCu,mpCu,mpNi])); ArCu:63.6;ArNi:58.7; float(solve([ArCu*nCu+ArNi*(345/2/F-nCu)=0.111,mpNi=100.0-mpCu, mpCu=100*ArCu*nCu/0.111],[nCu,mpCu,mpNi])); ArCu:64;ArNi:59; float(solve([ArCu*nCu+ArNi*(345/2/F-nCu)=0.111,mpNi=100.0-mpCu, mpCu=100*ArCu*nCu/0.111],[nCu,mpCu,mpNi])); A 98. pĂ©lda megoldása (a változĂłnevekben L: oldhatĂłsági szorzat, A: ezĂĽst, P: Ăłlom, S: szulfát, C: klorid, c0: kezdeti koncentráciĂł, Tc: teljes koncentráciĂł, ce: vĂ©gsĹ‘ egyensĂşlyi koncentráciĂł, tmp:kivált csapadĂ©knak megfelelĹ‘ koncentráciĂłcsökkenĂ©s): Számolás a szokásos mĂłdon: kill(all)$ratprint:false$fpprintprec:0$ LAS:7.70E-5$LPC:1.00E-4$LAC:1.56E-10$LPS:1.83E-8$ c0S:float(rhs(solve(LAS=(2*x)^2*x,x)[3]))$c0A:2.0*c0S$ c0P:float(rhs(solve(LPC=x*(2*x)^2,x)[3]))$c0C:2.0*c0P$ fpprintprec:6$[c0Ag=c0A,c0Pb=c0P,c0SO4=c0S,c0Cl=c0C]; TcS:c0S*2/3$TcA:c0A*2/3$TcC:c0C*1/3$TcP:c0P*1/3$ [TcAg=TcA,TcPb=TcP,TcSO4=TcS,TcCl=TcC]; is(TcP*TcS>LPS);is(TcA*TcC>LAC); fpprintprec:6$ float(solve(LPS=(TcP-x)*(TcS-x),x))$tmp:rhs(%[1])$ fpprintprec:3$ ceP:TcP-tmp;ceS:TcS-tmp$ fpprintprec:9$ float(solve(LAC=(TcA-x)*(TcC-x),x))$tmp:rhs(%[1])$ fpprintprec:3$ ceA:TcA-tmp;ceC:TcC-tmp$ [cAg=ceA,cPb=ceP,cSO4=ceS,cCl=ceC]; Számolás változtathatĂł számĂş Ă©rtĂ©kes jeggyel (fpprec): kill(all)$ratprint:false$fpprintprec:0$ fpprec:3; LAS:7.70b-5$LPC:1.00b-4$LAC:1.56b-10$LPS:1.83b-8$ c0S:bfloat(rhs(solve(LAS=(2b0*x)^2b0*x,x)[1]))$c0A:2.0b0*c0S$ c0P:bfloat(rhs(solve(LPC=x*(2b0*x)^2b0,x)[1]))$c0C:2.0b0*c0P$ fpprintprec:6$[c0Ag=c0A,c0Pb=c0P,c0SO4=c0S,c0Cl=c0C]; TcS:c0S*2b0/3b0$TcA:c0A*2b0/3b0$TcC:c0C*1b0/3b0$TcP:c0P*1b0/3b0$ [TcAg=TcA,TcPb=TcP,TcSO4=TcS,TcCl=TcC]; is(TcP*TcS>LPS);is(TcA*TcC>LAC); fpprintprec:6$ bfloat(solve(LPS=(TcP-x)*(TcS-x),x))$tmp:rhs(%[1])$ fpprintprec:3$ ceP:TcP-tmp$ceS:TcS-tmp$ fpprintprec:9$ bfloat(solve(LAC=(TcA-x)*(TcC-x),x))$tmp:rhs(%[1])$ fpprintprec:3$ ceA:TcA-tmp$ceC:TcC-tmp$ [cAg=ceA,cPb=ceP,cSO4=ceS,cCl=ceC]; PK-kvOńB–HmimetypePK-kvOŤf1SS 5format.txtPK-kvOZ=sý+_+_ °content.xmlPK§f