SciDAVis 2.2.8 project file muParser 2 19487
5.0000000000000002e-055.1000000000000000e-055.1999999999999997e-055.3000000000000001e-055.3999999999999998e-055.5000000000000002e-055.5999999999999999e-055.7000000000000003e-055.8000000000000000e-056.0000000000000002e-056.0999999999999999e-056.4999999999999994e-056.9999999999999994e-057.3999999999999996e-057.8999999999999996e-059.0000000000000006e-051.0100000000000000e-041.1900000000000001e-041.3999999999999999e-041.6000000000000001e-041.8000000000000001e-042.0100000000000001e-042.2100000000000001e-042.4100000000000000e-042.5999999999999998e-042.7999999999999998e-043.0100000000000000e-043.8700000000000000e+073.5900000000000000e+073.3700000000000000e+073.1600000000000000e+072.9500000000000000e+072.7900000000000000e+072.6500000000000000e+072.5400000000000000e+072.4100000000000000e+072.2100000000000000e+072.0300000000000000e+071.8500000000000000e+071.6300000000000000e+071.4900000000000000e+071.3600000000000000e+071.2200000000000000e+071.1100000000000000e+079.6300000000000000e+068.6900000000000000e+067.6500000000000000e+067.1300000000000000e+066.5200000000000000e+066.2400000000000000e+065.8000000000000000e+065.4200000000000000e+064.8400000000000000e+064.6200000000000000e+068.314*(273.15-72)/col("V")3.3447221999999996e+073.2791394117647056e+073.2160790384615384e+073.1553983018867921e+073.0969650000000000e+073.0406565454545449e+072.9863591071428571e+072.9339668421052627e+072.8833812068965513e+072.7872684999999996e+072.7415755737704918e+072.5728632307692308e+072.3890872857142858e+072.2599474324324325e+072.1169127848101266e+071.8581789999999996e+071.6558030693069305e+071.4053454621848738e+071.1945436428571429e+071.0452256874999998e+079.2908949999999981e+068.3202044776119394e+067.5672447963800896e+066.9392576763485475e+066.4321580769230770e+065.9727182142857146e+065.5560169435215946e+068.314*201.15/(col("V")-3.212e-5)-0.1367/col("V")^23.8852499999999993e+073.6021739135127299e+073.3568058022692367e+073.1428917073814452e+072.9554035975002699e+072.7902622774952322e+072.6441310634806693e+072.5142601556105807e+072.3983678677036792e+072.2012035310058981e+072.1169804131637394e+071.8507534282814324e+071.6250961090877749e+071.4968736476544697e+071.3769690556107283e+071.2017048704428919e+071.0878695339102166e+079.5958187768932749e+068.5275597035254613e+067.7377375762433512e+067.0897707433788497e+066.5190796703332160e+066.0552150831171256e+065.6527150698695723e+065.3165902717406563e+065.0030335942671420e+064.7109169944813401e+06sqrt(64e-16*(8.314*201.15)^2/(col("V")-3.212e-5)^4+0.0008^2/col("V")^4)5.2681479091503297e+054.8525888709084102e+054.4958791943846713e+054.1866644536238542e+053.9162101324318076e+053.6777172337142401e+053.4658352560447034e+053.2763105637554207e+053.1057291698211670e+052.8108440482340148e+052.6824233575087501e+052.2620331581344947e+051.8801375281692849e+051.6480720599116504e+051.4190543941011588e+051.0653395319315403e+058.3339414589431384e+045.9208506207930019e+044.2404307583707727e+043.2303155401841694e+042.5437996232329493e+042.0349552925899039e+041.6803497840891418e+041.4111064038918394e+041.2111514453591421e+041.0433806957627259e+049.0217591983392231e+03col("p-real")-10*col("p-sigma")3.3584352090849660e+073.1169150264218889e+072.9072178828307696e+072.7242252620190598e+072.5637825842570890e+072.4224905541238081e+072.2975475378761988e+072.1866290992350385e+072.0877949507215627e+071.9201191261824965e+071.8487380774128646e+071.6245501124679830e+071.4370823562708464e+071.3320664416633047e+071.2350636162006125e+071.0951709172497379e+071.0045301193207853e+079.0037337148139738e+068.1035166276883837e+067.4147060222249348e+066.8353907810555547e+066.3155841410742253e+065.8871801047082115e+065.5116044294803888e+065.1954751272047423e+064.8986955246908693e+064.6206994024979481e+06col("p-real")+10*col("p-sigma")4.4120647909150325e+074.0874328006035708e+073.8063937217077039e+073.5615581527438305e+073.3470246107434507e+073.1580340008666564e+072.9907145890851397e+072.8418912119861230e+072.7089407846857958e+072.4822879358292997e+072.3852227489146143e+072.0769567440948818e+071.8131098619047035e+071.6616808536456347e+071.5188744950208440e+071.3082388236360459e+071.1712089484996479e+071.0187903838972576e+078.9516027793625388e+068.0607691302617677e+067.3441507057021447e+066.7225751995922066e+066.2232500615260396e+065.7938257102587558e+065.4377054162765704e+065.1073716638434147e+064.8011345864647320e+0661848412012091120
geometry 0 0 990 383 Graph1 1 1 04/13/21 10:57 AM geometry 618 11 654 432 active WindowLabel 2 Margins 5 5 5 5 Spacing 5 5 LayerCanvasSize 400 277 Alignement 0 0 ggeometry 5 5 628 363 PlotTitle Az argon van der Waals állandóinak meghatározása #ff000000 4 1 Background #ffffffff 255 Margin 0 Border 0 #ff000000 grid 0 0 0 0 #ff0000ff 0 0 #ffa0a0a4 2 0 #ff0000ff 0 0 #ffa0a0a4 2 0 0 0 2 0 EnabledAxes 1 0 1 0 AxesTitles V/m3 p/Pa AxesTitleColors #ff000000 #ff000000 #ff000000 #ff000000 AxesTitleAlignment 4 4 4 4 TitleFont Lucida Sans 11 50 0 0 0 ScaleFont0 Lucida Sans 9 50 0 0 0 ScaleFont1 Lucida Sans 9 50 0 0 0 ScaleFont2 Lucida Sans 9 50 0 0 0 ScaleFont3 Lucida Sans 9 50 0 0 0 AxisFont0 Lucida Sans 9 50 0 0 0 AxisFont1 Lucida Sans 9 50 0 0 0 AxisFont2 Lucida Sans 9 50 0 0 0 AxisFont3 Lucida Sans 9 50 0 0 0 EnabledTickLabels 1 1 1 1 AxesColors #ff000000 #ff000000 #ff000000 #ff000000 AxesNumberColors #ff000000 #ff000000 #ff000000 #ff000000 AxesBaseline 0 0 0 0 CanvasBackground #ffffffff 255 curve Table1_V Table1_p-vdW 1 0 #ff000000 0 1 7 1 #ff000000 #ff000000 0 #ff000000 0 1 0 64 2 0 0 26 1 curve Table1_V Table1_p-ideal 1 0 #ff00ff00 0 1 7 1 #ff008080 #ff008080 0 #ff000000 0 1 0 64 2 0 0 26 1 FunctionCurve 0,NonLinearFit1,x,5e-05,0.000301 100 0 1 #ff000000 0 1 7 0 #ff00ffff #ff00ffff 0 #ff000000 0 1 0 64 2 0 525678576 621 1 a=0.136708215978293 b=3.2115890215989e-05 8.314*(273.15-72)/(x-b)-a/x^2 scale 0 0 40000000 0 8 5 0 0 scale 1 0 40000000 0 8 5 0 0 scale 2 0 0.00035 0 8 5 0 0 scale 3 0 0.00035 0 8 5 0 0 LabelsFormat 3 1 0 4 3 1 0 4 AxisType 0 0 0 0 MajorTicks 1 1 1 1 MinorTicks 1 1 1 1 TicksLength 2 4 DrawAxesBackbone 1 AxesLineWidth 1 LabelsRotation 0 0 0.000154528301886792 38344827.5862069 Lucida Sans 9 50 0 0 0 #ff000000 1 0 #00ffffff 0 \c{1}mért adatok \c{2}számolt ideális gáz \c{3}illesztett van der Waals gáz Modell: 8,314∙(273,15−72)/(V−b)−a/V2 a = 0,1367±0,0008 b = (3,212±0,008)×10-5 [04/13/21 11:17 AM Plot: ''Graph1''] Non-linear fit of dataset: Table1_p-vdW, using function: 8.314*(273.15-72)/(x-b)-a/x^2 Y standard errors: Unknown Scaled Levenberg-Marquardt algorithm with tolerance = 0.0001 From x = 5e-05 to x = 0.000301 a = 0.136708243800595 +/- 0.000757864029195589 b = 3.21158954020155e-05 +/- 7.62677229273846e-08 -------------------------------------------------------------------------------------- Chi^2 = 1,188,481,837,007.72 R^2 = 0.999605259226367 --------------------------------------------------------------------------------------- Iterations = 5 Status = success --------------------------------------------------------------------------------------- [04/13/21 11:19 AM Plot: ''Graph1''] Non-linear fit of dataset: Table1_p-vdW, using function: b=1e-05 8.314*(273.15-72)/(x-b)-a/x^2 Y standard errors: Unknown Scaled Levenberg-Marquardt algorithm with tolerance = 0.0001 From x = 5e-05 to x = 0.000301 a = 0.0292209307304606 +/- 0.00325953048037723 -------------------------------------------------------------------------------------- Chi^2 = 393,864,493,996,373 R^2 = 0.869182371807857 --------------------------------------------------------------------------------------- Iterations = 1 Status = cannot reach the specified tolerance in F --------------------------------------------------------------------------------------- [04/13/21 11:19 AM Plot: ''Graph1''] Non-linear fit of dataset: Table1_p-vdW, using function: b=1e-05 8.314*(273.15-72)/(x-b)-a/x^2 Y standard errors: Unknown Scaled Levenberg-Marquardt algorithm with tolerance = 0.0001 From x = 5e-05 to x = 0.000301 a = 0.0292209307426109 +/- 0.00325953048050283 -------------------------------------------------------------------------------------- Chi^2 = 393,864,493,996,373 R^2 = 0.869182371807857 --------------------------------------------------------------------------------------- Iterations = 0 Status = success --------------------------------------------------------------------------------------- [04/13/21 11:20 AM Plot: ''Graph1''] Non-linear fit of dataset: Table1_p-vdW, using function: 8.314*(273.15-72)/(x-b)-a/x^2 Y standard errors: Unknown Scaled Levenberg-Marquardt algorithm with tolerance = 0.0001 From x = 5e-05 to x = 0.000301 a = 0.136708215978293 +/- 0.000757864258062725 b = 3.2115890215989e-05 +/- 7.62677833110121e-08 -------------------------------------------------------------------------------------- Chi^2 = 1,188,481,836,082.53 R^2 = 0.999605259226674 --------------------------------------------------------------------------------------- Iterations = 7 Status = success ---------------------------------------------------------------------------------------