QtiPlot 0.9.8 project file muParser 3 Table1 30 3 3/31/2017 10:29:04 AM geometry 0 0 445 220 header V[X] p-vdW[Y] p-ideal[Y] ColWidth 100 100 100 1*8.314*(273.15-72)/col("V") ColType 0;0/8 0;0/8 0;0/8 ReadOnlyColumn 0 0 0 HiddenColumn 0 0 0 Comments WindowLabel 2 0 5e-05 38700000 33447222 1 5.1e-05 35900000 32791394 2 5.2e-05 33700000 32160790 3 5.3e-05 31600000 31553983 4 5.4e-05 29500000 30969650 5 5.5e-05 27900000 30406565 6 5.6e-05 26500000 29863591 7 5.7e-05 25400000 29339668 8 5.8e-05 24100000 28833812 9 6e-05 22100000 27872685 10 6.1e-05 20300000 27415756 11 6.5e-05 18500000 25728632 12 7e-05 16300000 23890873 13 7.4e-05 14900000 22599474 14 7.9e-05 13600000 21169128 15 9e-05 12200000 18581790 16 0.000101 11100000 16558031 17 0.000119 9630000 14053455 18 0.00014 8690000 11945436 19 0.00016 7650000 10452257 20 0.00018 7130000 9290895 21 0.000201 6520000 8320204.5 22 0.000221 6240000 7567244.8 23 0.000241 5800000 6939257.7 24 0.00026 5420000 6432158.1 25 0.00028 4840000 5972718.2 26 0.000301 4620000 5556016.9
FitStats1 100 3 3/31/2017 10:44:26 AM geometry 0 220 445 220 hidden header 1[X] LPL[Y] UPL[Y] ColWidth 85 61 61 ColType 0;0/8 0;0/8 0;0/8 ReadOnlyColumn 0 0 0 HiddenColumn 0 0 0 Comments Independent Variable Lower 0.95 Prediction Limit Upper 0.95 Prediction Limit WindowLabel Prediction Limits of Non-linear Fit 2 0 5e-05 38364513 39290927 1 5.2535354e-05 31904948 32830503 2 5.5070707e-05 27315286 28240013 3 5.7606061e-05 23949808 24873740 4 6.0141414e-05 21415071 22338240 5 6.2676768e-05 19460893 20383330 6 6.5212121e-05 17922573 18844311 7 6.7747475e-05 16688519 17609590 8 7.0282828e-05 15681248 16601685 9 7.2818182e-05 14845821 15765655 10 7.5353535e-05 14142558 15061822 11 7.7888889e-05 13542335 14461062 12 8.0424242e-05 13023460 13941682 13 8.2959596e-05 12569565 13487315 14 8.5494949e-05 12168150 13085460 15 8.8030303e-05 11809566 12726469 16 9.0565657e-05 11486286 12402815 17 9.310101e-05 11192385 12108573 18 9.5636364e-05 10923157 11839036 19 9.8171717e-05 10674833 11590436 20 0.00010070707 10444368 11359728 21 0.00010324242 10229287 11144438 22 0.00010577778 10027562 10942536 23 0.00010831313 9837519.4 10752349 24 0.00011084848 9657768.2 10572487 25 0.00011338384 9487146.2 10401787 26 0.00011591919 9324675.1 10239271 27 0.00011845455 9169526.8 10084111 28 0.0001209899 9020995.8 9935600.5 29 0.00012352525 8878477.6 9793136.3 30 0.00012606061 8741451.4 9656197 31 0.00012859596 8609465.7 9524331.3 32 0.00013113131 8482127.4 9397145.8 33 0.00013366667 8359091.8 9274296.1 34 0.00013620202 8240055.6 9155478.6 35 0.00013873737 8124750.2 9040425 36 0.00014127273 8012937.1 8928896.4 37 0.00014380808 7904402.7 8820679.5 38 0.00014634343 7798955.7 8715582.8 39 0.00014887879 7696423.5 8613433.5 40 0.00015141414 7596649.6 8514075.3 41 0.00015394949 7499492 8417366.2 42 0.00015648485 7404821.2 8323176.5 43 0.0001590202 7312518.3 8231387.2 44 0.00016155556 7222474.2 8141889.4 45 0.00016409091 7134588.2 8054582.1 46 0.00016662626 7048767.4 7969372.4 47 0.00016916162 6964925.2 7886173.7 48 0.00017169697 6882981.3 7804905.6 49 0.00017423232 6802860.8 7725493 50 0.00017676768 6724493.4 7647865.8 51 0.00017930303 6647813.6 7571958.1 52 0.00018183838 6572759.4 7497708.1 53 0.00018437374 6499272.8 7425057.6 54 0.00018690909 6427299 7353951.6 55 0.00018944444 6356786 7284338.3 56 0.0001919798 6287684.9 7216168.4 57 0.00019451515 6219949.1 7149395.4 58 0.00019705051 6153534.5 7083975 59 0.00019958586 6088399.1 7019865.2 60 0.00020212121 6024503 6957025.8 61 0.00020465657 5961807.9 6895418.7 62 0.00020719192 5900277.6 6835007.3 63 0.00020972727 5839877.3 6775756.8 64 0.00021226263 5780573.7 6717634 65 0.00021479798 5722335.2 6660606.7 66 0.00021733333 5665131.1 6604644.6 67 0.00021986869 5608932.3 6549718.1 68 0.00022240404 5553710.8 6495799.3 69 0.00022493939 5499439.6 6442860.9 70 0.00022747475 5446092.8 6390877 71 0.0002300101 5393645.5 6339822.5 72 0.00023254545 5342073.8 6289673.5 73 0.00023508081 5291354.6 6240406.6 74 0.00023761616 5241465.6 6191999.5 75 0.00024015152 5192385.6 6144430.7 76 0.00024268687 5144093.7 6097679.2 77 0.00024522222 5096570 6051725.2 78 0.00024775758 5049795.4 6006549.1 79 0.00025029293 5003751.1 5962132.3 80 0.00025282828 4958419.3 5918456.5 81 0.00025536364 4913782.5 5875504.3 82 0.00025789899 4869824 5833258.8 83 0.00026043434 4826527.5 5791703.5 84 0.0002629697 4783877.3 5750822.6 85 0.00026550505 4741858.1 5710600.6 86 0.0002680404 4700455.3 5671022.8 87 0.00027057576 4659654.5 5632074.5 88 0.00027311111 4619441.8 5593742 89 0.00027564646 4579804 5556011.4 90 0.00027818182 4540727.9 5518869.8 91 0.00028071717 4502200.9 5482304.3 92 0.00028325253 4464210.9 5446302.5 93 0.00028578788 4426745.9 5410852.4 94 0.00028832323 4389794.3 5375942.3 95 0.00029085859 4353345 5341560.7 96 0.00029339394 4317387.2 5307696.8 97 0.00029592929 4281910.2 5274339.6 98 0.00029846465 4246903.8 5241478.9 99 0.000301 4212358 5209104.5
Graph1 1 1 3/31/2017 10:29:53 AM geometry 463 5 562 454 active WindowLabel 2 Margins 5 5 5 5 Spacing 5 5 LayerCanvasSize 400 300 Alignement 0 0 0 0 ggeometry -1 10 536 385 -0.0018315 0.025 0.981685 0.9625 PlotTitle Az argon van der Waals állandóinak meghatározása #000000 4228 0 0 1 0 1 Background #ffffff 0 Margin 0 Border 0 #000000 grid 0 0 0 0 #0000ff 0 0.5 #a0a0a4 2 0.4 #0000ff 0 0.5 #a0a0a4 2 0.4 0 0 2 0 0 EnabledAxes 1 0 1 0 AxesTitles V/m3 p/Pa %(?Y) AxesTitleColors #000000 #000000 #000000 #000000 AxesTitleAlignment 5124 4 5124 4 AxesTitleDistance 2 -1 2 -1 InvertedTitle 0 0 0 0 TitleFont MS Shell Dlg 2 10 75 0 0 0 ScaleFont0 MS Shell Dlg 2 8 75 0 0 0 ScaleFont1 MS Shell Dlg 2 8 75 0 0 0 ScaleFont2 MS Shell Dlg 2 8 75 0 0 0 ScaleFont3 MS Shell Dlg 2 8 75 0 0 0 AxisFont0 MS Shell Dlg 2 8 50 0 0 0 AxisFont1 MS Shell Dlg 2 8 50 0 0 0 AxisFont2 MS Shell Dlg 2 8 50 0 0 0 AxisFont3 MS Shell Dlg 2 8 50 0 0 0 AxesColors #000000 #000000 #000000 #000000 AxesNumberColors #000000 #000000 #000000 #000000 AxesBaseline 0 0 0 0 CanvasBackground #ffffff 0 curve Table1_V Table1_p-vdW 1 0 #000000 0 1 5 1 #000000 #000000 0 #000000 14 1 2 0 0 29 1 curve Table1_V Table1_p-ideal 1 0 #ff0000 0 1 5 1 #008080 #008080 0 #000000 14 1 2 0 0 29 1 0 NonLinearFit1 8.314*(273.15-72)/(x-b)-a/x^2 x 5e-05 0.000301 100 a 0.136708216854532 b 3.21158903211448e-05 1 #000000 1 2 0 0 1 curve FitStats1_1 FitStats1_LPL 0 1 #0000ff 0 1 0 0 #000000 #a0a0a4 0 #000000 14 0 2 0 0 99 1 curve FitStats1_1 FitStats1_UPL 0 1 #0000ff 0 1 0 0 #000000 #a0a0a4 0 #000000 14 0 2 0 0 99 1 scale 0 0 40000000 0 9 5 0 0 scale 1 0 40000000 0 9 5 0 0 scale 2 0 0.00035 0 8 5 0 0 scale 3 0 0.00035 0 8 5 0 0 LabelsFormat 3 1 0 6 3 1 0 6 AxisType 0 0 0 0 MajorTicks 1 1 1 1 MinorTicks 1 1 1 1 TicksLength 2 4 DrawAxesBackbone 1 1 1 1 1 AxesLineWidth 1 LabelsRotation 0 0 0 0 LabelsPrefix LabelsSuffix TickLabelsSpace 4 4 4 4 ShowTicksPolicy 0 0 0 0 EnabledTickLabels 1 1 1 1 1 #000000 1 0 0.00017850779510022 39122257.053292 8.55381165919282e-05 34640522.875817 1 1 1 \l(1)mért adatok \l(2)számolt ideális gáz \l(3)illesztett van der Waals gáz \l(4)95%-os megbízhatósági tartomány Modell: 8,314∙(273,15–72)/(x–b)–a/x2 a = (1,367±0,008)×10–1 b = (3,211±0,008)×10–5 MS Shell Dlg 2 8 50 0 0 0 #000000 #ffffff 0 0 1 0 0 1 1 [3/31/2017 10:43:00 AM Plot: ''Graph1''] Non-linear Fit of dataset: Table1_p-vdW, using function: 8.314*(273.15-72)/(x-b)-a/x^2 Weighting Method: No weighting Scaled Levenberg-Marquardt algorithm with tolerance = 0.0001 From x = 5.0000000000000e-05 to x = 3.0100000000000e-04 a = 1.3670821685453e-01 +/- 7.5786425097926e-04 b = 3.2115890321145e-05 +/- 7.6267781872229e-08 -------------------------------------------------------------------------------------- Chi^2/doF = 4.7539273443308e+10 R^2 = 0.9996052592267 Adjusted R^2 = 0.9995723641622 RMSE (Root Mean Squared Error) = 218035.0280191 RSS (Residual Sum of Squares) = 1188481836083 --------------------------------------------------------------------------------------- Iterations = 5 Status = success ---------------------------------------------------------------------------------------