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Appendix

A.1 The Atomic Weights

1 IA

Periodic Table of the Elements
18 VIIIA

1

1

H
1.0079

hydro-
gen 2 IIA IUPAC ←group number→ CAS 13 IIIA 14 IVA 15 VA 16 VIA 17 VIIA

2

He
4.0026

helium

2

3

Li
6.941

lithium

4

Be
9.0122

berylli-
um

period

atomic number

element symbol
atomic weight (IUPAC, 2007,

with up to 5 significant figures)

name

legend

5

B
10.811

boron

6

C
12.011

carbon

7

N
14.007

nitrogen

8

O
15.999

oxygen

9

F
18.998

fluor

10

Ne
20.180

neon

3

11

Na
22.990

sodium

12

Mg
24.305

magne-
sium 3 IIIB 4 IVB 5 VB 6 VIB 7 VIIB 8 VIIIB 9 VIIIB 10 VIIIB 11 IB 12 IIB

13

Al
26.982

alumini-
um

14

Si
28.086

silicon

15

P
30.974

phos-
phorus

16

S
32.065

sulfur

17

Cl
35.453

chlorine

18

Ar
39.948

argon

4

19

K
39.098

potassi-
um

20

Ca
40.078

calcium

21

Sc
44.956

scandi-
um

22

Ti
47.867

titanium

23

V
50.942

vanadi-
um

24

Cr
51.996

chromi-
um

25

Mn
54.938

manga-
nese

26

Fe
55.845

iron

27

Co
58.933

cobalt

28

Ni
58.693

nickel

29

Cu
63.546

copper

30

Zn
65.38

zinc

31

Ga
69.723

gallium

32

Ge
72.61

germa-
nium

33

As
74.922

arsenic

34

Se
78.96

seleni-
um

35

Br
79.904

bromine

36

Kr
83.80

krypton

5

37

Rb
85.468

rubidi-
um

38

Sr
87.62

stronti-
um

39

Y
88.906

yttrium

40

Zr
91.224

zirconi-
um

41

Nb
92.906

niobium

42

Mo
95.96

molyb-
denum

43

Tc
(98)

techneti-
um

44

Ru
101.07

rutheni-
um

45

Rh
102.91

rhodium

46

Pd
106.42

palladi-
um

47

Ag
107.87

silver

48

Cd
112.41

cadmi-
um

49

In
114.82

indium

50

Sn
118.71

tin

51

Sb
121.76

antimo-
ny

52

Te
127.60

tellurium

53

I
126.90

iodine

54

Xe
131.29

xenon

6

55

Cs
132.91

cesium

56

Ba
137.33

barium

57

La†
138.91

lantha-
num

72

Hf
178.49

hafnium

73

Ta
180.95

tantalum

74

W
183.84

tungsten

75

Re
186.21

rhenium

76

Os
190.23

osmium

77

Ir
192.22

iridium

78

Pt
195.08

platinum

79

Au
196.97

gold

80

Hg
200.59

mercury

81

Tl
204.38

thallium

82

Pb
207.2

lead

83

Bi
208.98

bismuth

84

Po
(209)

poloni-
um

85

At
(210)

astatine

86

Rn
(222)

radon

7

87

Fr
(223)

francium

88

Ra
(226)

radium

89

Ac‡
(227)

actinium

104

Rf
(267)

ruther-
fordium

105

Db
(268)

dubnium

106

Sg
(271)

seabor-
gium

107

Bh
(272)

bohrium

108

Hs
(270)

hassium

109

Mt
(276)

meitner-
ium

110

Ds
(281)

darm-
stadtium

111

Rg
(280)

roent-
genium

† lanthanoids
58

Ce
140.12

cerium

59

Pr
140.91

praseo-
dymium

60

Nd
144.24

neo-
dymium

61

Pm
(145)

prome-
thium

62

Sm
150.36

samari-
um

63

Eu
151.96

europi-
um

64

Gd
157.25

gadolini-
um

65

Tb
158.93

terbium

66

Dy
162.50

dyspro-
sium

67

Ho
164.93

holmium

68

Er
167.26

erbium

69

Tm
168.93

thulium

70

Yb
173.04

ytterbi-
um

71

Lu
174.97

lutetium

‡ actinoids
90

Th∗
232.04

thorium

91

Pa∗
231.04

protac-
tinium

92

U∗
238.03

uranium

93

Np
(237)

neptuni-
um

94

Pu
(244)

plutoni-
um

95

Am
(243)

americi-
um

96

Cm
(247)

curium

97

Bk
(247)

berkeli-
um

98

Cf
(251)

californi-
um

99

Es
(252)

einstei-
nium

100

Fm
(257)

fermium

101

Md
(258)

mende-
levium

102

No
(259)

nobeli-
um

103

Lr
(262)

lawren-
cium

∗ The atomic weight cannot be given for the elements have no stable nuclides. For these elements, the
value enclosed in parentheses indicates the mass number of the longest-lived isotope of the element.
However, there are three exceptions (Th, Pa and U) because they have characteristic composition in the
crust of Earth so their atomic weights can be given.
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A.2 Fundamental Constants for the Calculations

Symbol Value Quantity

c◦ 1 M standard concentration
F 96485 C/mol Faraday’s constant
p0 101325 Pa 1 atm pressure expressed in SI unit
p◦ (it is the standard pressure, as well)

R 8.314
J

mol K
gas constant

T0 –273.15 °C absolute zero degree

A.3 Temperature and Concentration Dependence of the Potential of
the Calomel Reference Electrode

The potential of calomel electrode (Ecal) can be calculated with ±0.1 mV accuracy in
the 0–70 °C temperature range and at different KCl concentrations with the

Ecal = E
25 °C −

3∑
i=1

ai · (t− 25 °C)i (A.1)

expression where t is the temperature expressed in °C, furthermore empirical con-
stants E25 °C, a1, a2 and a3 are the followings:

[KCl]/M lg([KCl]/M) E25 °C/V a1/(V/ °C) a2/(V/ °C) a3/(V/ °C)
0.1 −1 0.3337 8.75×10−5 3.00×10−6 0

1.0 0 0.2801 2.75×10−4 2.50×10−6 4×10−9

3.5 0.5441 0.2500 4.00×10−4 0 0

5.15∗ 0.7114 0.2412 6.61×10−4 1.75×10−6 9×10−10

∗It is the concentration of the saturated KCl solution at 25 °C.

For other concentration of KCl solution, the values of the four empirical constants
must be interpolated as functions of the logarithm of the concentration. E.g., in case
of [KCl]=0.5 M, the 10-based logarithm of the concentration is −0.3010 so the

−0.301−(−1)

0−(−1)
=
E25 °C−0.3337

0.2801−0.3337
=

a1−8.75×10
−5

2.75×10−4−8.75×10−5
=

a2 − 3×10
−6

2.5×10−6 − 3×10−6
=

a3 − 0

4×10−9 − 0

equations are to be solved to get the appropriate values of E25 °C, a1, a2 and a3 in
order to use (A.1).
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Specific Conductivity Values of KCl Solutions A.3(147)

A.4 Specific Conductivity Values of KCl Solutions at DifferenT
Temperatures and Concentrations

t/ °C 18 19 20 21 22 23 24
0.01 M KCl 0.001225 0.001251 0.001278 0.001305 0.001332 0.001359 0.001386

0.1 M KCl 0.01119 0.01143 0.01167 0.01191 0.01215 0.01239 0.01264
1.0 M KCl 0.09822 0.10014 0.10207 0.10400 0.10554 0.10789 0.10984

t/ °C 25 26 27 28 29 30
0.01 M KCl 0.001413 0.001441 0.001468 0.001496 0.001524 0.001552

0.1 M KCl 0.01288 0.01313 0.01337 0.01362 0.01387 0.01412
1.0 M KCl 0.11180 0.11377 0.11524 – – –

The specific conductivity values are given inΩ−1cm−1 unit in this table.

A.5 Temperature Dependence of the Density of Water
The density of water can be calculated with five digits accuracy after the decimal
point by the help of the

%v(t) = 1.00026− 5.08692×10
−6
· t2 (A.2)

empirical formula in the range of 15 °C≤t≤35 °C. The result is given in g/cm3 unit at
t temperature (expressed in °C).

If either different temperature range or higher accuracy is needed then the next
(more complicated) empirical formula should be used:

%v(t) = a0 +

n∑
i=1

ai ·t
i , (A.3)

where the next values must be substituted as empirical coefficients:

range 0–55 °C 0–31 °C 0–55 °C 0–100 °C
number of

precise digits 4 6 5 5
n 3 5 5 10
a0 0.99987 0.9998406403 0.9998419163 0.99984014

a1 5.291×10−05 6.801284×10−05 6.694929×10−05 6.8755×10−05

a2 −7.47×10−06 −9.11644×10−06 −8.91382×10−06 −9.3732×10−06

a3 3.36×10−08 1.02356×10−07 8.77509×10−08 1.38951×10−07

a4 – −1.22323×10−09 −7.80638×10−10 −3.87034×10−09

a5 – 8.11007×10−12 3.35582×10−12 1.152421×10−10

a6 – – – −2.552887×10−12

a7 – – – 3.700248×10−14

a8 – – – −3.290154×10−16

a9 – – – 1.623754×10−18

a10 – – – −3.3993×10−21 ph
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For example, if the density of the water is required with the precision of four digits,
the

%v(t) = 0.99987+ 5.291×10
−05
·54− 7.47×10−06 ·542 + 3.36×10−08 ·543 = 0.9862g/cm3

equation is suitable to calculate it.

A.6 Temperature and Ionic Strength Dependence of the Ionic
Product of Water

The negative logarithm of the ionic product of water is given with two digits accuracy
after the decimal point at a given temperature t (expressed in °C) and at ionic
strength I (expressed in molar concentration) by the

pKv = 13.99− 1.02 ·
√

I− 0.0343 · (t− 25) (A.4)

empirical formula in the range of 15 °C≤t≤30 °C and at ionic strength values less
than 0,05 M.

A.7 Preparation of Starch Solution

For the preparation of 100 cm3, ∼0.5 % starch solution, 0.1 g salicylic acid is solved
in about 100 cm3 boiling water in a ∼250 cm3 Erlenmeyer flask. ∼0.5 g starch (made
from potato) is shaken with about 10 cm3 distilled water in a test tube, and this
solution is infused into the boiling salicylic acid solution. This mixture is boiled
until it is getting lose its translucency and the solution becomes opalescent (no more
than two minutes). This solution must be cooled and filtered through cotton wad.
This starch solution can be used in about two months if it is stored in fridge. If starch
is made from corn then the starch solution can be used only within two weeks. If
the starch solution is to be used soon (within 4–5 days) then the salicylic acid can be
omitted from the above procedure and everything else remains the same.

A.8 Standard Deviation of Data
It frequently happens during the laboratory exercises that the same value is deter-
mined more times from more measurements (e.g., a pseudo-first-order rate coeffi-
cient can be calculated from any point of a kinetic curve). These values do not equal
to each other completely because of experimental and other uncertainties. Assume
that a value is measured m times and let denote the jth data with zj. In this case,
the final (more precisely the most probable) value is regarded as the mean of the
individual values, and the value (z) and its standard deviation (σz) can be given
with the following formulas:

z =

m∑
j=1

zj

m
és σz =

√√√√√ m∑
j=1

(zj − z)
2

m− 1
=

√√√√√√√√
m·

m∑
j=1

z2
i
−

(
m∑
j=1

zi

)2
m·(m− 1)

. (A.5)
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Calculation of the Error Propagation A.5(149)

It should be emphasized that the statistical error is not the same as the standard
deviation. Their relation is the

standard deviation =
√

degree of freedom · error ,1

formula where the degree of freedom=m−1. Many computer program calculates
the errors only and the above formula is needed to calculate the standard deviation.

A.9 Calculation of the Error Propagation

The calculation of the error propagation (more precisely, the standard deviation
propagation) is a frequent task when measured data are evaluated. The most simple
approximate rule is well known: the absolute values of the deviations are to be
added in cases of addition and subtraction, and the relative values of the deviation
are to be added in cases of multiplication and division. This procedure, however,
always overestimates the deviation of the result, moreover, it cannot be applied even
to the most common function transformations (e.g., square root, logarithm). This
section gives those formulas by the help of which the calculation of the deviations
can be done correctly.

We assume that there are two data and their deviations are known: X±σX and
Y±σY . A result (Z) must be calculated by using one or both of them, and the deviation
of Z (σZ) is also to be known. Table A.1 summarizes the formulas applicable for the
basic arithmetic operations and also for the most common function transformations
to get the deviation of the result. If the wanted result requires the use of more
operation and/or transformations then these formulas can be used one after another
to get the final result. For example:

ln(2.0 ± 0.1)+(0.4 ± 0.02)0.5 =
(
ln 2 ±

0.1

2

)
+

(
0.40.5 ± (|0.5 · 0.02 · 0.4−0.5|)

)
= (0.693 ± 0.050)+ (0.632 ± 0.016)

= (0.693 ± 0.632)+
(√
0.052 ± 0.0162

)
= 1.34 ± 0.05 (or 1.336 ± 0.052)

A.10 Slope, Intercept and their Statistics of Fitted Lines

During the laboratory exercises, the calculation of the slope and/or intercept of a
fitted line is the most frequent method to get the result. This section summarizes
the formulas (without deduction) necessary to get the parameters of a fitted line and
their deviations even with a single calculator. Before these formulas, however, there
are two important remarks:

1There is an important fact that many programs (more versions of EXCEL are among them) use the
degree of freedom incorrectly, it is simply replaced by the number of data in many functions. It causes
negotiable change in the numerical values of the deviation if there are numerous data, otherwise this
change can even be 20 %. During the laboratory practices, it is acceptable to calculate the deviation values
from the error values given by the EXCEL functions. ph
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Table A.1: Calculation of the standard deviation during the basic arithmetic operations
and applying the most important functions. a denotes the constant, deviationless values in
the following formulas. For the trigonometric functions, the values of the angles and their
deviations should be given in radian. The other abbreviations are exlained in the text.

operation or
function

result and deviation
(Z ± σZ)

example

multiply with a (a·X)±(|a·σX|) 3·(1, 2±0, 3)= (3·1, 2)±(3·0, 3)=3, 6±0, 9

addition (X+Y)±
(√
σ2
X
+σ2

Y

)
(2, 2±0, 3)+(8, 4±0, 5)=

(2.2+8.4)±
(√
0.32+0.52

)
=10.6±0.6

subtraction (X−Y)±
(√
σ2
X
+σ2

Y

)
(3.2±0.3)−(2.4±0.5)=

(3.2−2.4)±
(√
0.32+0.52

)
=0.8±0.6

multiplication (X·Y)±
(√
Y2 ·σ2

X
+X2 ·σ2

Y

)
(2.2±0.2)·(8.4±1.0)=

(2.2·8.4)±
(√
8.42 ·0.22+2.22 ·1.02

)
=18.5±2.8

division
(
X

Y

)
±


√
Y2 ·σ2

X
+X2 ·σ2

Y

Y4

 (22.0±2.0)/(8.4±1.0)=(22.0
8.4

)
±


√
8.42 ·2.02+22.02 ·1.02

8.44

=2.6±0.4

reciprocal
(
1

X

)
±

(
σX

X2

) 1
(0.44±0.12)

=
( 1

0.44

)
±

( 0.12
0.442

)
=2.3±0.6

raising (Xa)±(|a·σX ·X
a−1|) (3.0±0.5)1.2=

to a power
(
3.01.2

)
±

(∣∣∣1.2·0.5·3.01.2−1
∣∣∣)=3.7±0.7

exponential (eX)±(σX ·e
X) e(2.0±0.5)=

(
e2.0

)
±

(
0.5·e2.0

)
=7.4±3.7

functions (10X)±(ln(10)·σX ·10X) 10(1.3±0.1)=
(
101.3

)
±

(
2.3·0.1·101.3

)
=20±5

logarithmic (lnX)±(σX/X) ln(2.0±0.1)= (ln(2.0))±(0.1/2.0)=0.69±0.05

functions (lgX)±
(

σX

ln(10)·X

)
lg(20±10)= (lg(20))±(10/(2.3·20))=1.3±0.2

trigono-
(sinX)±(| cosX|·σX) sin(60◦±5◦)=

(
sin

π

3

)
±

(∣∣∣∣cos
π

3

∣∣∣∣· 5·π180

)
=0.87±0.04

metric (cosX)±(| sinX|·σX) cos(60◦±5◦)=
(
cos

π

3

)
±

(∣∣∣∣sin
π

3

∣∣∣∣· 5·π180

)
=0.5±0.08

functions
(tanX)±

(
σX

(cosX)2

)
tan(45◦±5◦)=

(
tan

π

4

)
±

(
5·π
180

/(
cos

π

4

)2
)
=1.0±0.2

inverse

(arcsinX)±
(

σX
√
1− X2

)
arcsin(0.87±0.08)=(

arcsin(0.87)±
(

0.08
√
1− 0.872

))
·
180
π

=60◦±9◦

trigonomet- (arccosX)±
(

σX
√
1− X2

)
arccos(0.5±0.08)=(

arccos(0.5)±
(

0.08
√
1− 0.52

))
·
180
π

=60◦±5◦ric functions

(arc tanX)±
(
σX

1+ X2

)
arc tan(1.0±0.2)=(

arc tan(1.0)±
( 0.2

1 + 1.02

))
·
180
π

=45◦±6◦

1. At the first look, the formulas may seem rather complicated, their usage, however,
is more simple in the practice. The reader can ascertain this statement by solving
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Slope, Intercept and their Statistics of Fitted Lines A.7(151)

the problem given in Table A.2 (page A.7) with a single calculator. Moreover,
the most scientific calculator can calculate statistical functions and automatically
store the partial results making the calculations even faster.

2. Many special and general programs (e.g. spreadsheets) are able to calculate the
parameters of a fitted line so their use is rapidly spreading. Most of these pro-
grams, however, give the errors as statistical parameters, not deviations! Some
manuals mention deviations but the error is the really calculated value. The rela-
tion between the deviation and the error is given by the

standard deviation =
√

degree of freedom · error ,1

formula. Assume that n data pairs is used for fitting. The degree of freedom
equals to (n−2) if both the slop and the intercept are fitted. The degree of free-
dom equals to (n−1) if only the slope is fitted and the intercept is supposed to be
zero.
The following abbreviations are used in the formulas:
n is the number of fitted data pairs,
xi is the value of the independent variable in the ith data pair (i = 1 . . . n),
yi is the value of the dependent variable in the ith data pair (i = 1 . . . n),
a the slope of the fitted line (y=a·x+b vagy y=a·x),
b the intercept of the fitted line (y=a·x+b),
σa the standard deviation of the slope and
σb the standard deviation of the intercept.

The formulas are more simple by introducing the following abbreviations:
Sx and Sy are the sums of xi and yi; Sxy is the sum of of the products of xi and
yi data; Sxx is the sum of xi data and S∆ is the sum of the squares of deviations
between the measured data (yi) and their calculated corresponding data (a ·xi+b),
respectively:

Sx=

n∑
i=1

xi, Sy=

n∑
i=1

yi, Sxy=

n∑
i=1

xi ·yi, Sxx=

n∑
i=1

x2i and S∆=

n∑
i=1

(yi−a·xi−b)
2 .

The slope (a) and its standard deviation (σa) of the fitted line in case of no intercept
(b=0):

a =
Sxy

Sxx
=

 n∑
i=1

xi ·yi

 / n∑
i=1

x2i

 (A.6a)

σa =

√
n2

n− 1
·

S∆

n·Sxx − (Sx)
2

=

√√√√√√√√√√√√√√ n2

n− 1
·

n∑
i=1

(yi−a·xi)
2

n·
n∑
i=1

x2
i
−

(
n∑
i=1

xi

)2 (A.6b)

The slope (a) and its standard deviation (σa) of the fitted line in case of fitted intercept
(b,0): ph
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Table A.2: A detailed example how to calculate the a and b parameters, as well as their
standard deviations of a fitted y=a·x+b equation. The abbreviations defined from page A.7
are used in the followings.

Data:
i: 1 2 3 4 5
xi: 1.0 2.0 3.0 4.0 5.0
yi: 3.1 3.9 5.2 5.8 7.0

0 1 2 3 4 5
2

4

6

x

y

Partial results:
Sx = 1.0+ 2.0+ 3.0+ 4.0+ 5.0 = 15.0
Sy = 3.1+ 3.9+ 5.2+ 5.8+ 7.0 = 25.0
Sxy = 1.0·3.1+ 2.0·3.9+ 3.0·5.2+ 4.0·5.8+ 5.0·7.0 = 84.7
Sxx = 1.0

2 + 2.02 + 3.02 + 4.02 + 5.02 = 55.0

n·Sxx − (Sx)
2
= 5·55.0− 15.02 = 50.0

The slope from (A.7a) and the intercept from (A.8a):

a =
5·84.7− 15.0·25.0

50.0
= 0.97 b =

55.0·25.0− 15.0·84.7

50.0
= 2.09

Partial result:
S∆ = (3.1−0.97·1.0−2.09)2 + (3.9−0.97·2.0−2.09)2+

(5.2−0.97·3.0−2.09)2 + (5.8−0.97·4.0−2.09)2+
(5.9−0.97·5.0−2.09)2 = 0.091

The standard deviation of the slope and the intercept from (A.7b) and (A.8b), respectively:

σa =

√
52

5− 2
·
0.091

50.0
= 0.12 σb =

√
5·55.0

5− 2
·
0.091

50.0
= 0.41

Remark: Many programs (including EXCEL) calculate slightly different values for the devia-
tions: σa=0.095 és σb=0.32. The reason is that these programs apply simplified expressions
for calculating the errors and deviations, particularly only n is used instead of n−1 and n−2
in the denominators of equations (A.6b), (A.7b) and (A.8b).

a =
n·Sxy − Sx ·Sy

n·Sxx − (Sx)
2

=

n·
n∑
i=1

xi ·yi −

(
n∑
i=1

xi

)
·

(
n∑
i=1

yi

)
n·

n∑
i=1

x2
i
−

(
n∑
i=1

xi

)2 (A.7a)

σa =

√
n2

n− 2
·

S∆

n·Sxx − (Sx)
2

=

√√√√√√√√√√√√√√ n2

n− 2
·

n∑
i=1

(yi−a·xi−b)
2

n·
n∑
i=1

x2
i
−

(
n∑
i=1

xi

)2 (A.7b)

The intercept (b) and its standard deviation (σb) of the fitted line:
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b =
Sxx ·Sy − Sx ·Sxy

n·Sxx − (Sx)
2

=

(
n∑
i=1

x2
i

)
·

(
n∑
i=1

yi

)
−

(
n∑
i=1

xi

)
·

(
n∑
i=1

xi ·yi

)
n·

n∑
i=1

x2
i
−

(
n∑
i=1

xi

)2 (A.8a)

σb =

√
n·Sxx

n− 2
·

S∆

n·Sxx − (Sx)
2

=

√√√√√√√√√√√√√√n·
n∑
i=1

x2
i

n− 2
·

n∑
i=1

(yi−a·xi−b)
2

n·
n∑
i=1

x2
i
−

(
n∑
i=1

xi

)2 (A.8b)

A.11 Creating Scientific Figures
The requirements are the same both for a hand-made figure created on a graph paper
and for a figure created by a computer program:
• If there is no specific reason for the omission of some data then all measured data

(or their derived quantities) should be indicated on the figure.
• There must be appropriate titles for both the axes (also including the unit if it

is necessary) and for the whole figure. The titles must be correct from both
professional and grammatical points of view. There should be student’s name
and date on the figure, preferably.

• Such divisions, ticks and labels should be chosen for the axes which make possible
easy back-reading, fast plotting of data (for hand-made figures) and minimizing
the useless areas. This principle should always be applied to the actual task. For
example, in case of fitting a straight line, sometimes it is advisable to show the
intercept, even it is outside of the range of data.

• In case of curve-fitting, the figure must show both the fitted and the omitted data
(with different symbol!), as well as, the fitted curve together with the value(s) of
the fitted parameter(s).

• If a figure contains more curves and/or data series then they have to be distin-
guished clearly.
There can be more expectations depending on the concrete task. In rare cases, one

or more requirements cannot be fulfilled completely. For example, if the value of
an erroneous point differs from the others by orders of magnitude, it would fully
distort the figure. However, accepting the above principles is enough for perfect
figures in the vast majority of the cases.

It may be clear from the above considerations that sloppy knowledge about the
used graphing program is not enough in many times. A figure created by the default
options of a program cannot be accepted usually as the final one. The user must be able
to handle the used program in such level which makes possible to fulfill the above detailed
requirements! This statement is to be emphasized even sharply in scientific life since
most commercial graphing programs (also including the spreadsheet programs) ph
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set up their default options to serve economic and presentation purposes and not
scientific requirements, like precision.

Hereinafter those typical errors are demonstrated through an example which are
more frequent during creating figures with a computer program. Both figures A.1
and A.2 illustrate straight line fitting for the same data series. Figure A.1 fully
comply the above detailed expectations while Figure A.2 show the more frequent
errors (according to the experience). If a program is used with care and knowledge,
these errors can be avoided easily. The rest of this section in this appendix compares
the two figures to help how to sidestep the following typical errors and imperfections:

Automatically connected points. By default, almost all programs denote the data
with a symbol and also connect them, usually with lines. These lines do not carry
additional information just lead on the eyes through the tendency of the points,
the economic figures look nicer. Lines usually denote fitted or calculated curves on
scientific figures so connecting the measured data may be misleading. Furthermore,
it can result unintelligible figure if the order of the x-values is not strictly increasing
or decreasing. For example, a single point deviating from the strict order gives an
unwanted line on Figure A.2.

Unsuitable range(s) for the axes. A few programs automatically indicate the origin
of the coordinate system. Depending on the range of the points to be plotted, it can
result that all points jostle into a tiny part of the figure and their structure becomes
unclear.

Inexact division of the axes can be the outcome if a program calculates the mini-
mum and maximum values of the axes from the minimum and maximum values
of the data series to be plotted. On Figure A.2, the division of the y-axis is wrong
because the range of 13–120 cannot be divided well into ten parts. Additionally,
the labels of the main ticks are incorrect since they are rounded to the nearest inte-
ger. Therefore the back-reading is wrong, different values can be read from ranges
with the same length (e.g., 120–109,109–99)! It must be known how to set up the
minimum and maximum values of the axes, the density of the division and the
displayed form of the labels.

Automatic axis setup may lead to wrong division, meaningless or missing titles
and/or labels along the axes. On Figure A.2, the labels of the ticks are missing along
the x-axis, the meaningless automatic axes titles may come from the used filenames
and column numbers, the limiting data just hang at the edges of the figure.

Inexpressive main title may make the understanding more difficult mainly if lots
of time pass between the creation and the reading of the figure. Several programs
default the main title to the name of the file containing the data and/or the graphical
settings.

Missing name, title or date may also be an annoying information loss. In the exam-
ple, the date is missing from the wrong figure.

Wrong positioning in any part of the figure is just funny in lucky cases but it may
lead to information loss in worse cases. The position of the legend box is wrong on
Figure A.2 so the half of it is hidden.
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Automatic legend block is meaningless very often. Either it should be omitted com-
pletely or it should be filled with precise information.This block has a definite role
if more curves are included in a figure and short notes are necessary to distinguish
them.

Grid is not essential part of figures but if there is any it should be adjusted appro-
priately. Too dense grid does not help to read the figure since it may disturb the
recognition of the curves. Too sparse grid is also imperfect since it makes difficult
to back-read data from the figures. Several times, the figure is more clear if there
is not any grid. What is certainly wrong that either only the horizontal or only the
vertical grids are indicated as illustrated on the wrong figure in our example.

Inappropriate font type and/or font size may lead to ugly and funny titles and re-
marks in a better case but it may cause misinterpretation in a worse case. The name
indicated on Figure A.2 is unnecessary tawdry. Usually it is worth to use sans serif
font types (e.g., Swiss, Arial, Helvetica, Tahoma, Verdana, Calibri, etc.) and the
boldface variants often look better.

Points omitted from fitting are either removed or their symbol is identical with
that of the fitted points frequently. If the omitted points are not indicated on the
figure then information is lost about both the real precision of measurement and
the reason(s) of omitting points. If the fitted and omitted points are denoted by
the same symbol then the reproducibility of the fitting procedure becomes almost
impossible.
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Bryce Wise, 2nd year chemBSc student , 02/14/2017
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Figure A.1: A perfect figure made on a computer.
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Figure A.2: A figure made on a computer to show the typical errors.
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