APPENDIX
A.1 The Atomic Weights
1 1A 18 VIIA
i iadi |
H Periodic Table of the Elements He
11.0079 4.0026
hydro- helium
gen 2 1A IUPAC  «-group number— CAS 13 IIA 14 IVA 15 VA 16 VIA 17VIIA
3 4 atomic number 5 6 7 8 9 10
Li | Be element symbol B|C | N|O|F|Ne
2| 6.941 |9.0122 period | atomic weight (IUPAC, 2007, 10.811 | 12,011 | 14.007 | 15.999 | 18.998 | 20.180
jithim | berylii- with up to 5 significant figures) b bon |t i
i oron | carbon |nitrogen| oxygen | fiuor | neon
n name
1 12 |e end 13 14 X 15 16 17 18
Na | Mg 9 Al|Si|P| s |cCl|Ar
322,990 | 24.305 26.982 | 28.086 | 30.974 | 32.065 | 35.453 | 39.948
sodium | magne- alumini-| silicon | phos- | sulfur |chlorine| argon
sium (3 1IB4 IVB5 VB 6 VIB7 VIB S8 VIB 9 VIB 10VIIB11 1B 12 1B um phorus
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K|Ca|Sc| Ti|V |[Cr|Mn|Fe|Co|Ni|Cu|Zn|Ga|Ge|As|Se|Br|Kr

4| 39.098 | 40.078 | 44.956 | 47.867 | 50.942 | 51.996 | 54.938 | 55.845 | 58.933 | 58.693 | 63.546 | 65.38 | 69.723 | 72.61 |74.922 | 78.96 | 79.904 | 83.80

potassi- | calcium | scandi- [titanium | vanadi- | chromi- [manga-| iron | cobalt | nickel | copper | zinc | gallium | germa- |arsenic | seleni- |bromine krypton
um um um | um | nese nium um

37 38 39 40 a1 42 43 44 45 46 47 48 49 |50 51 [52 |53 54
Rb|Sr| Y |Zr |[Nb|Mo|Tc|Ru|Rh|Pd|Ag|Cd|In |Sn|Sb|Te| I |Xe
5 85.468 | 87.62 | 88.906 | 91.224 | 92.906 | 95.96 (98) 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126.90 | 131.29
rubidi- | stronti- | yttrium | zirconi- | niobium | molyb- ftechneti-|rutheni- |hodium | palladi- | silver | cadmi- | indium | tin | antimo- [tellurium| iodine | xenon

um | um um denum | um | um um um ny
[55 |56 57 72 73 74 75 76 77 78 79 81 82— 83 84 85 86

80 2
Cs|Ba|Laf{Hf [ Ta| W |Re |Os| Ir | Pt |Au|Hg| Tl |Pb| Bi | Po | At | Rn

6| 132.91 | 137.33 | 138.91 | 178.49 | 180.95 | 183.84 | 186.21 | 190.23 | 192.22 | 195.08 | 196.97 | 200.59 | 204.38 | 207.2 | 208.98 | (209) | (210) | (222)
cesium | barium | lantha- iridium [platinum| gold |mercury|thallium| lead |bismuth | poloni- |astatine| radon

num um

87 88 89 104 105 106 107 108 109 110 111
Fr | Ra | Act| Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg

7| (228) | (226) | (227) | (267) | (268) | (271) | (272) | (270) | (276) | (281) | (280)

ffrancium| radium [actinium| ruther- (dubnium| seabor- |bohri i i darm- | roent-

fordium gium ium  [stadtium| genium
5 59 60 62 63 65 68 70 71

-'. 8 61 64 66 67 69
lanthanoids | Ce | Pr | Nd |Pm |Sm | Eu [Gd | Tb | Dy |Ho | Er | Tm| Yb | Lu
140.12 | 140.91 | 144.24 | (145) | 150.36 | 151.96 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | 174.97

cerium | praseo-| neo- | prome- | samari- | europi- |gadolini-| terbium | dyspro- [holmium| erbium | thulium | ytterbi- |lutetium
dymium |dymium| thium | um | um | um sium um

i y . 90 91 92 93 94 95 96 97 98 99 100 101 102 103
actinoids | Th*| Pa*| U*|Np | Pu |[Am |Cm| Bk | Cf | Es | Fm | Md | No | Lr
232.04 | 231.04 | 238.03 | (237) | (244) | (243) | (247) | (247) | (251) (252) (257) (258) | (259) | (262)

thorium | protac- |urani plutoni- |americi-| curium | berkeli- |californi-| einstei- |fermium| mende- | nobeli- | lawren-
tinium um um um um nium levium | um cium

* The atomic weight cannot be given for the elements have no stable nuclides. For these elements, the
value enclosed in parentheses indicates the mass number of the longest-lived isotope of the element.
However, there are three exceptions (Th, Pa and U) because they have characteristic composition in the
crust of Earth so their atomic weights can be given.
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A.2 Fundamental Constants for the Calculations

Symbol | Value Quantity

c® 1M standard concentration

F 96485 C/mol | Faraday’s constant

Po 101325 Pa 1 atm pressure expressed in SI unit

p® (it is the standard pressure, as well)
I

R 8.314 molK | 8% constant

To —-273.15°C absolute zero degree

A.3 Temperature and Concentration Dependence of the Potential of
the Calomel Reference Electrode

The potential of calomel electrode (Ecar) can be calculated with +0.1 mV accuracy in
the 0-70 °C temperature range and at different KCI concentrations with the

3
Eel = E®C =) a;-(t—25°C)° (A1)

i=1

expression where t is the temperature expressed in °C, furthermore empirical con-
stants E°C, a;, a, and a3 are the followings:

[KCYM | Ig([KCIYM) | E¥"NV - ar/(V/°C)  ax/(V/°C)  a3/(V/°C)
0.1 —1 0.3337  8.75%x107>  3.00x107° 0
1.0 0 02801 2.75x107* 2.50x107¢  4x10~7
35 0.5441 0.2500  4.00x10~* 0 0
5.15° 0.7114 0.2412 6.61x107* 1.75x107¢  9x1071°

“Tt is the concentration of the saturated KCI solution at 25 °C.

For other concentration of KCl solution, the values of the four empirical constants
must be interpolated as functions of the logarithm of the concentration. E.g., in case
of [KCI]=0.5M, the 10-based logarithm of the concentration is —0.3010 so the
—0301—(=1) E®©-03337 = a1-875x1005 = a;-3x10°  a3-0
0—(—=1)  0.2801—0.3337  2.75x10—4—8.75x10~5  2.5x10—6 —3x10=6  4x10—9 —0

equations are to be solved to get the appropriate values of E®°C, a;, a; and a3 in
order to use (A.1).
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A.4 Specific Conductivity Values of KCI Solutions at DifferenT
Temperatures and Concentrations

t/°C 18 19 20 21 22 23 24
0.01M KCl1 | 0.001225 0.001251 0.001278 0.001305 0.001332 0.001359 0.001386
0.1MKCI | 0.01119 0.01143 0.01167 0.01191 0.01215 0.01239 0.01264
1.0M KCI | 0.09822 0.10014 0.10207 0.10400 0.10554 0.10789 0.10984

t/°C 25 26 27 28 29 30
0.01M KCl1 | 0.001413 0.001441 0.001468 0.001496 0.001524 0.001552
0.1MKCI | 0.01288 0.01313 0.01337 0.01362 0.01387 0.01412

1.0MKCI | 0.11180 0.11377 0.11524 - . -

The specific conductivity values are given in Q~'cm ™! unit in this table.

A5 Temperature Dependence of the Density of Water

The density of water can be calculated with five digits accuracy after the decimal
point by the help of the

o (t) = 1.00026 — 5.08692%107° - t A2
ov(t) = 1.0002 8692x1076 - 2

empirical formula in the range of 15 °C<t<35 °C. The result is given in g/cm?® unit at
t temperature (expressed in °C).

If either different temperature range or higher accuracy is needed then the next
(more complicated) empirical formula should be used:

ov(t) =ao+ Z ai-th|, (A.3)
i=1

where the next values must be substituted as empirical coefficients:

range 0-55°C 0-31°C 0-55°C 0-100°C
p?&riggtgigifts 4 6 5 5
n 3 5 5 10
ao 0.99987 0.9998406403 | 0.9998419163 0.99984014
a 5.291x10795| 6.801284x107 9| 6.694929x 1005 6.8755x1095
a —7.47%x107°6|—9.11644x107°6|—-8.91382x10 96| —9.3732x10%¢
as 3.36x10798| 1.02356x107°7| 8.77509x107°8| 1.38951x10~°7
as - —1.22323%10797|—7.80638x 10~ 10| —3.87034x10°7
as - 8.11007x107 12| 3.35582x10~'2| 1.152421x10~ 10
ae - - - —2.552887x10~12
arz - - - 3.700248x 1014
as - - - —3.290154x10'6
as - - - 1.623754x107 18

ao - - - —3.3993x10~2!
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For example, if the density of the water is required with the precision of four digits,
the

0v(t) = 0.99987 +5.291x 1079554 — 7.47x 10796542 + 3.36x10708.543 = 0.9862 g/cm>

equation is suitable to calculate it.

A.6 Temperature and lonic Strength Dependence of the lonic
Product of Water
The negative logarithm of the ionic product of water is given with two digits accuracy

after the decimal point at a given temperature t (expressed in °C) and at ionic
strength I (expressed in molar concentration) by the

PKy = 13.99 — 1.02- VI —0.0343 - (t — 25) (A4)

empirical formula in the range of 15°C<t<30°C and at ionic strength values less
than 0,05 M.

A.7 Preparation of Starch Solution

For the preparation of 100 cm?, ~0.5 % starch solution, 0.1 g salicylic acid is solved
in about 100 cm?® boiling water in a ~250 cm® Erlenmeyer flask. ~0.5 g starch (made
from potato) is shaken with about 10cm?® distilled water in a test tube, and this
solution is infused into the boiling salicylic acid solution. This mixture is boiled
until it is getting lose its translucency and the solution becomes opalescent (no more
than two minutes). This solution must be cooled and filtered through cotton wad.
This starch solution can be used in about two months if it is stored in fridge. If starch
is made from corn then the starch solution can be used only within two weeks. If
the starch solution is to be used soon (within 4-5 days) then the salicylic acid can be
omitted from the above procedure and everything else remains the same.

A.8 Standard Deviation of Data

It frequently happens during the laboratory exercises that the same value is deter-
mined more times from more measurements (e.g., a pseudo-first-order rate coeffi-
cient can be calculated from any point of a kinetic curve). These values do not equal
to each other completely because of experimental and other uncertainties. Assume
that a value is measured m times and let denote the jﬂ‘ data with z;. In this case,
the final (more precisely the most probable) value is regarded as the mean of the
individual values, and the value (z) and its standard deviation (oz) can be given
with the following formulas:

m
PR

Z=——| és
m
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It should be emphasized that the statistical error is not the same as the standard
deviation. Their relation is the

standard deviation = /degree of freedom - error A

formula where the degree of freedom=m—1. Many computer program calculates
the errors only and the above formula is needed to calculate the standard deviation.

A.9 Calculation of the Error Propagation

The calculation of the error propagation (more precisely, the standard deviation
propagation) is a frequent task when measured data are evaluated. The most simple
approximate rule is well known: the absolute values of the deviations are to be
added in cases of addition and subtraction, and the relative values of the deviation
are to be added in cases of multiplication and division. This procedure, however,
always overestimates the deviation of the result, moreover, it cannot be applied even
to the most common function transformations (e.g., square root, logarithm). This
section gives those formulas by the help of which the calculation of the deviations
can be done correctly.

We assume that there are two data and their deviations are known: X+ox and
Y+ovy. Aresult (Z) must be calculated by using one or both of them, and the deviation
of Z (oz) is also to be known. Table A.1 summarizes the formulas applicable for the
basic arithmetic operations and also for the most common function transformations
to get the deviation of the result. If the wanted result requires the use of more
operation and/or transformations then these formulas can be used one after another
to get the final result. For example:

In2+ %)+(o.4°-5 + (/0.5 0.02-0.47°3))

= (0.693 + 0.050) -+ (0.632 = 0.016)
= (0.693 = 0.632) +( V0.052 £ 0.016?)
= 1.34+0.05 (or 1.336 + 0.052)

In(2.0 £0.1)+(0.4 £ 0.02)°->

A.10 Slope, Intercept and their Statistics of Fitted Lines

During the laboratory exercises, the calculation of the slope and/or intercept of a
fitted line is the most frequent method to get the result. This section summarizes
the formulas (without deduction) necessary to get the parameters of a fitted line and
their deviations even with a single calculator. Before these formulas, however, there
are two important remarks:

IThere is an important fact that many programs (more versions of EXCEL are among them) use the
degree of freedom incorrectly, it is simply replaced by the number of data in many functions. It causes
negotiable change in the numerical values of the deviation if there are numerous data, otherwise this
change can even be 20 %. During the laboratory practices, it is acceptable to calculate the deviation values
from the error values given by the EXCEL functions.
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Table A.1: Calculation of the standard deviation during the basic arithmetic operations
and applying the most important functions. a denotes the constant, deviationless values in
the following formulas. For the trigonometric functions, the values of the angles and their
deviations should be given in radian. The other abbreviations are exlained in the text.

operation or result and deviation
. example
function (Z+oz)
multiply with a | (a-X)£(la-ox|) 3-(1,2+0,3)= (31,2)%(3-0,3)=3,6+0,9
. 2,2+0,3)+(8,4+0,5)=
addition (X4+Y)£({/02 +0‘2) (2,20, ) )
o (2.2+8.4) £(V0.32+0.52)=10.620.6
) 3.2+0.3)— (2.4+0.5)= o
subtraction (XfY)i(, o2 +c72) (
o (3.2-2.4)£(V0.32+0.57)=0.8+0.6
multiplication (X<Y)i(,IY2-U§<+XZ-G¢) (2.2£0.2)-(84+1.0)=
(2.2:8.4)+(V8.47:0.27+2.27-1.07)=18.5+2.8
X Y202 X202 || (22.0+£2.0)/(8.4+1.0)=
division (*)i —x ¥
Y Y (@)J, 8422.0°422.010%)
84 /) 8.44 =
R 1 o 1 1 0.12
reciprocal | (g (%) 044z012) (o) (g )220
raising (X*)£(la-ox-X*)) (3.0£0.5)'2=
to a power (3.0'2)(]1.2:0.5:3.0% 1[)=3.7£0.7
—_— -+ 2.0 2.0\
exponential ()£ (0x-€) el 2000 — (¢2)(05¢*)=7.443.7
functions (10%)£(In(10)-0x-10%X) | 100301 = (10'?)%(2.3-0.1-10'?)=20+5
logarithmic | (InX)%(ox/X) In(2.0+0.1)= (In(2.0))+(0.1/2.0)=0.69£0.05
functions (Ig X)i(iln((]yg)_x) 1g(20+10)=  (Ig(20))£(10/(2.3-20))=1.3+0.2
(sin X)2(| cos X|-ox) Sin(60°+5°)= (sm 7l)i(|cos T -5'—”):0.8710.04
trigono- 3 3 3_)80
metric (cos X)+(|sin X|-ox) cos(60°£5°)= (Cos E)i(|sm T —n):o.Sio 08
functions 3 5 3 18(2)
ox o 50\ (2T ™o
(tanX)i((COSX]Z) tan(45°+5°)= (tan4)i(1 O/(cos4) ) 1.0+0.2
. Ox .
(arcsin X) | 7) arcsin(0.87+0.08)=
Vi=X2 0.08 180
. (arcs'u1(0.87)1(7))—:60"19"
inverse ( : ox ( : V1 —-0.872 us
trigonomet- |(arccos X 1(7) arccos(0.5+0.08)=
ric functions VT —X? 0.08 180 .,
arccos(0.5) +| ——|]- —=60°+5
ox Vi—o052)) =
(arctanX)i( ) arctan(1.0+£0.2)=
e (ar tan(1 0)+( 02 ))~@f45°+6°
R VSV ==

1. Atthe firstlook, the formulas may seem rather complicated, their usage, however,
is more simple in the practice. The reader can ascertain this statement by solving
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the problem given in Table A.2 (page A.7) with a single calculator. Moreover,
the most scientific calculator can calculate statistical functions and automatically
store the partial results making the calculations even faster.

2. Many special and general programs (e.g. spreadsheets) are able to calculate the
parameters of a fitted line so their use is rapidly spreading. Most of these pro-
grams, however, give the errors as statistical parameters, not deviations! Some
manuals mention deviations but the error is the really calculated value. The rela-
tion between the deviation and the error is given by the

standard deviation = +/degree of freedom - error !

formula. Assume that n data pairs is used for fitting. The degree of freedom
equals to (n—2) if both the slop and the intercept are fitted. The degree of free-
dom equals to (n—1) if only the slope is fitted and the intercept is supposed to be
zero.
The following abbreviations are used in the formulas:
n is the number of fitted data pairs,
x; is the value of the independent variable in the i data pair i=1...n),
y; is the value of the dependent variable in the i data pair i =1...n),
a the slope of the fitted line (y=a-x+b vagy y=a-x),
b the intercept of the fitted line (y=a-x+b),
04 the standard deviation of the slope and
op the standard deviation of the intercept.
The formulas are more simple by introducing the following abbreviations:
Sy and S are the sums of x; and yi; Sxy is the sum of of the products of x; and
y; data; Sxx is the sum of x; data and S, is the sum of the squares of deviations
between the measured data (y;) and their calculated corresponding data (a-x;+b),
respectively:

n

n n n n
SX:in, S‘J:Zyi, SXU:in-yi, SXX:in2 and SA:Z(yifaoqu)z .
i=1 i=1 i=1 i=1

i : : i—1

The slope (a) and its standard deviation (o) of the fitted line in case of no intercept
(b=0):

a= % [i xi~yi)/(z xf] (A.6a)

i(yra%i)z
n? Sa n? i
cu—\/n_]- il il e 5 (A.6b)
n'sxx_ (Sx) n 2 D
n-_il X7 — ; X4

The slope (a) and its standard deviation (o) of the fitted line in case of fitted intercept
(b#0):
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Table A.2: A detailed example how to calculate the a and b parameters, as well as their
standard deviations of a fitted y=a-x+b equation. The abbreviations defined from page A.7
are used in the followings.

Data: y
i1 2 3 4 5

xi: 1.0 20 3.0 40 50

yi: 31 39 52 58 70

Partial results:
Sy =1.0+2.0+3.04+4.0+5.0=15.0
Sy =314+39+52+58+7.0=250
Sey = 1.0-3.1 +2.0-3.9 4 3.0-5.2 +4.0-5.8 + 5.0-7.0 = 84.7
Sex = 1.02 4+ 2.0 + 3.02 + 4.02 + 5.02 = 55.0
M-Sex — (Sx)? = 5-55.0 — 15.0% = 50.0

The slope from (A.7a) and the intercept from (A.8a):
5-84.7 —15.0-25.0 55.0-25.0 — 15.0-84.7
A= TS0 pe e =00
Partial result:
Sa =(3.1-0.97-1.0—2.09)% + (3.9—0.97-2.0—2.09)?+
(5.2—0.97-3.0—2.09)2 + (5.8—0.97-4.0—2.09)%+
(5.9—-0.97-5.0—2.09)? =0.091

The standard deviation of the slope and the intercept from (A.7b) and (A.8b), respectively:

52 0.091 555.0 0.091
%= \V5-2500 22 L=y\F—; 500 24

Remark: Many programs (including EXCEL) calculate slightly different values for the devia-
tions: 0,=0.095 és 0,=0.32. The reason is that these programs apply simplified expressions
for calculating the errors and deviations, particularly only n is used instead of n — 1 and n—2
in the denominators of equations (A.6b), (A.7b) and (A.8b).

n-2 XiYi— Xi) i
T-Sxy — Sx-Sy i=1 Y (1:1 ) (i:1y )
a= TRy ; (A7a)
n- xx_(x) TLZX%-(ZXl
i=1 i=1
o 2
i—axi—b
A SR N RG-S (A7)
N2 ns — (502 [n—2  n no\? '
n’ZXf—(Z Xi)
i=1 i=1

The intercept (b) and its standard deviation (o) of the fitted line:
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s sy (B (B (E )

= = (A.8a)
NSy — (Sx)° no (n )Z
n: Z Xy — Z Xi
i =1
n Y xf Y (yi—axi—b)?
o [TeSxx Sa _ =1 = (A.8b)
TN 2 ns, (502 n-2 . (n )2 '
ny X=X x
i i=1

A.11 Creating Scientific Figures

The requirements are the same both for a hand-made figure created on a graph paper

and for a figure created by a computer program:

o If there is no specific reason for the omission of some data then all measured data
(or their derived quantities) should be indicated on the figure.

o There must be appropriate titles for both the axes (also including the unit if it
is necessary) and for the whole figure. The titles must be correct from both
professional and grammatical points of view. There should be student’s name
and date on the figure, preferably.

o Such divisions, ticks and labels should be chosen for the axes which make possible
easy back-reading, fast plotting of data (for hand-made figures) and minimizing
the useless areas. This principle should always be applied to the actual task. For
example, in case of fitting a straight line, sometimes it is advisable to show the
intercept, even it is outside of the range of data.

¢ In case of curve-fitting, the figure must show both the fitted and the omitted data
(with different symbol!), as well as, the fitted curve together with the value(s) of
the fitted parameter(s).

e If a figure contains more curves and/or data series then they have to be distin-
guished clearly.

There can be more expectations depending on the concrete task. In rare cases, one
or more requirements cannot be fulfilled completely. For example, if the value of
an erroneous point differs from the others by orders of magnitude, it would fully
distort the figure. However, accepting the above principles is enough for perfect
figures in the vast majority of the cases.

It may be clear from the above considerations that sloppy knowledge about the
used graphing program is not enough in many times. A figure created by the default
options of a program cannot be accepted usually as the final one. The user must be able
to handle the used program in such level which makes possible to fulfill the above detailed
requirements! This statement is to be emphasized even sharply in scientific life since
most commercial graphing programs (also including the spreadsheet programs)
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set up their default options to serve economic and presentation purposes and not
scientific requirements, like precision.

Hereinafter those typical errors are demonstrated through an example which are
more frequent during creating figures with a computer program. Both figures A.1
and A.2 illustrate straight line fitting for the same data series. Figure A.1 fully
comply the above detailed expectations while Figure A.2 show the more frequent
errors (according to the experience). If a program is used with care and knowledge,
these errors can be avoided easily. The rest of this section in this appendix compares
the two figures to help how to sidestep the following typical errors and imperfections:

Automatically connected points. By default, almost all programs denote the data
with a symbol and also connect them, usually with lines. These lines do not carry
additional information just lead on the eyes through the tendency of the points,
the economic figures look nicer. Lines usually denote fitted or calculated curves on
scientific figures so connecting the measured data may be misleading. Furthermore,
it can result unintelligible figure if the order of the x-values is not strictly increasing
or decreasing. For example, a single point deviating from the strict order gives an
unwanted line on Figure A.2.

Unsuitable range(s) for the axes. A few programs automatically indicate the origin
of the coordinate system. Depending on the range of the points to be plotted, it can
result that all points jostle into a tiny part of the figure and their structure becomes
unclear.

Inexact division of the axes can be the outcome if a program calculates the mini-
mum and maximum values of the axes from the minimum and maximum values
of the data series to be plotted. On Figure A.2, the division of the y-axis is wrong
because the range of 13-120 cannot be divided well into ten parts. Additionally,
the labels of the main ticks are incorrect since they are rounded to the nearest inte-
ger. Therefore the back-reading is wrong, different values can be read from ranges
with the same length (e.g., 120-109+£109-99)! It must be known how to set up the
minimum and maximum values of the axes, the density of the division and the
displayed form of the labels.

Automatic axis setup may lead to wrong division, meaningless or missing titles
and/or labels along the axes. On Figure A.2, the labels of the ticks are missing along
the x-axis, the meaningless automatic axes titles may come from the used filenames
and column numbers, the limiting data just hang at the edges of the figure.

Inexpressive main title may make the understanding more difficult mainly if lots
of time pass between the creation and the reading of the figure. Several programs
default the main title to the name of the file containing the data and/or the graphical
settings.

Missing name, title or date may also be an annoying information loss. In the exam-
ple, the date is missing from the wrong figure.

Wrong positioning in any part of the figure is just funny in lucky cases but it may
lead to information loss in worse cases. The position of the legend box is wrong on
Figure A.2 so the half of it is hidden.
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Automatic legend block is meaningless very often. Either it should be omitted com-
pletely or it should be filled with precise information.This block has a definite role
if more curves are included in a figure and short notes are necessary to distinguish

The Birge-Sponer diagram of the I, molecule
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them.
Grid is not essential part of figures but if there is any it should be adjusted appro- 12
. . 4 . . ) 0
priately. Too dense grid does not help to read the figure since it may disturb the o \ L : T R @
recognition of the curves. Too sparse grid is also imperfect since it makes difficult 100 P 2. P R
to back-read data from the figures. Several times, the figure is more clear if there Q
is not any grid. What is certainly wrong that either only the horizontal or only the - 80 k“ﬂ.\_
vertical grids are indicated as illustrated on the wrong figure in our example. ‘g N o B "M\ s
Inappropriate font type and/or font size may lead to ugly and funny titles and re- 5 60 k'\
marks in a better case but it may cause misinterpretation in a worse case. The name < \
indicated on Figure A.2 is unnecessary tawdry. Usually it is worth to use sans serif 40 1 — fitted line \ :
font types (e.g., Swiss, Arial, Helvetica, Tahoma, Verdana, Calibri, etc.) and the o fitted data \Qx“ :
boldface variants often look better. o2 omitted data l"'%c
. . L ith d hei bol is identical with Result of Fitting: : %0,
Points omltt?dfromﬁttlng are either removed or t eir symbol is 1.entlca wit AG/em™=(2.032:0.072)v'+(130.4+2.2) | | -+ . NG
that of the fitted points frequently. If the omitted points are not indicated on the 1) IS — | I : :
figure then information is lost about both the real precision of measurement and 0 10 20 30 v 40 50 60

the reason(s) of omitting points. If the fitted and omitted points are denoted by
the same symbol then the reproducibility of the fitting procedure becomes almost
impossible.

Figure A.1: A perfect figure made on a computer.
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Figure A.2: A figure made on a computer to show the typical errors.
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