List of Published Papers
116.
L. Fehér, On the maximal superintegrability of
strongly isochronous Hamiltonians, Journ. Geom. Phys.
209, 105409
(2025).
115. L.
Fehér, Poisson-Lie analogues of spin Sutherland models revisited, J.
Phys A: Math. Theor. 57, 205202 (45pp) (2024).
114.
L. Fehér, Notes on the degenerate integrability of reduced systems
obtained from the master systems of free motion on cotangent bundles of compact
Lie groups, pp. 309-330
in:
Geometric Methods in Physics XL,
eds. P. Kielanowski et al (Birkhauser,
2024).
113.
M. Fairon and L. Fehér, Integrable multi-Hamiltonian systems
from reduction of an extended quasi-Poisson double of U(n), Ann. Henri Poincaré 24, 3461-3529 (2023).
112.
L. Fehér, Poisson reductions of
master integrable systems on doubles of compact Lie groups, Ann. Henri Poincaré 24, 1823-1876 (2023).
111. L. Fehér and B. Juhász, A note on quadratic
Poisson brackets on gl(n,R) related to Toda
lattices, Lett. Math. Phys. 112:45 (2022).
110.
L. Fehér, Bi-Hamiltonian structure of Sutherland models coupled to two
u(n)*-valued spins from
Poisson reduction, Nonlinearity 35, 2971-3003 (2022).
109. L. Fehér, Bi-Hamiltonian
structure of spin Sutherland models: the holomorphic case, Ann. Henri Poincaré 22,
4063-4085 (2021).
108. M. Fairon and L. Fehér, A decoupling property of some Poisson
structures on Mat(n x d,C) x Mat(d x n,C) supporting GL(n,C) x GL(d,C) Poisson--Lie
symmetry, Journ. Math. Phys. 62, 033512 (2021).
107. M. Fairon, L. Fehér and I. Marshall, Trigonometric real form of the spin RS model of Krichever and Zabrodin, Ann.
Henri Poincaré 22, 615-675 (2021).
106.
L. Fehér and I. Marshall,
On the bi-Hamiltonian structure of the trigonometric spin Ruijsenaars--Sutherland hierarchy, pp. 75-87 in: Geometric Methods in
Physics XXXVIII, eds. P. Kielanowski et al (Birkhauser,
2020).
105. L. Fehér, Reduction of a bi-Hamiltonian hierarchy on
104. L. Fehér,
Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone,
Nonlinearity 32, 4377-4394 (2019).
103. L. Fehér, Poisson-Lie analogues of spin Sutherland models, Nucl. Phys. B 949, 114807 (2019).
102. L. Fehér and I. Marshall, Global
description of action-angle duality for a Poisson-Lie deformation of the
trigonometric BC(n) Sutherland
system, Annales Henri Poincaré 20, 1217–1262
(2019).
101. L.
Fehér and I. Marshall, The action-angle dual of an integrable Hamiltonian
system of Ruijsenaars-Schneider-van Diejen type, J. Phys. A: Math. Theor. 50,
314004 (20pp) (2017).
100. L. Fehér and T.F. Görbe,
The full phase space of a model in the Calogero-Ruijsenaars
family, J. Geom. Phys. 115, 139-149 (2017).
99. L. Fehér and T.F. Görbe,
Trigonometric and elliptic Ruijsenaars-Schneider
systems on the complex projective space, Lett. Math. Phys. 106, 1429-1449
(2016).
98. L. Fehér and T.F. Görbe, On
a Poisson-Lie deformation of the BC(n) Sutherland system, Nucl.
Phys. B 901, 85-114 (2015).
97. T.F. Görbe and
L. Fehér, Equivalence of two sets of Hamiltonians associated with
the rational BC(n) Ruijsenaars-Schneider-van Diejen system, Phys. Lett. A 379, 2685-2689
(2015).
96. L. Fehér and
B.G. Pusztai, Generalized spin Sutherland systems revisited, Nucl. Phys. B 893,
236-256 (2015).
95. L. Fehér and T.F. Görbe,
Duality between the trigonometric BC(n) Sutherland system and a completed
rational Ruijsenaars-Schneider-van Diejen system, Journ. Math. Phys.
55, 102704 (2014).
94. L. Fehér and T.J. Kluck, New
compact forms of the trigonometric Ruijsenaars-Schneider
system, Nucl. Phys. B 882, 97-127 (2014).
93. L. Fehér, Action-angle map
and duality for the open Toda lattice in the perspective of Hamiltonian
reduction, Phys. Lett. A 377, 2917-2921 (2013).
92. L.Fehér, An
application of the reduction method to Sutherland type many-body systems, pp. 109-117 in: Geometric Methods in Physics XXXI, eds. P. Kielanowski et al (Birkhauser,
2013).
91.
L. Fehér and C. Klimcik,
The Ruijsenaars self-duality map as a mapping class symplectomorphism, pp. 423-437 in: Lie Theory and Its
Applications in Physics, IX International Workshop, ed. V. Dobrev (Springer,
2013).
90. V. Ayadi, L. Fehér and T.F. Görbe, Superintegrability
of rational Ruijsenaars-Schneider systems and their
action-angle duals, J. Geom. Symmetry Phys. 27,
27-44 (2012).
89. L. Fehér and C. Klimcik, On
the spectra of the quantized action variables of the compactified Ruijsenaars-Schneider system, Theor. Math. Phys. 171,
704-714 (2012).
88. L. Fehér and C. Klimcik,
Self-duality of the compactified Ruijsenaars-Schneider
system from quasi-Hamiltonian reduction, Nucl. Phys.
B 860, 464-515 (2012).
87. V. Ayadi and L. Fehér, An integrable BC(n)
Sutherland model with two types of particles, Journ.
Math. Phys 52, 103506 (2011).
86. L. Fehér, C. Klimcik
and S. Ruijsenaars, A note on the Gauss decomposition
of the elliptic Cauchy matrix , J. Nonlin.
Math. Phys. 18, 179-182 (2011).
85. L. Fehér and C. Klimcik, Poisson-Lie interpretation of trigonometric Ruijsenaars duality, Commun. Math. Phys. 301, 55–104
(2011).
84. L. Fehér and V. Ayadi, Trigonometric Sutherland systems and
their Ruijsenaars duals from symplectic
reduction, Journ. Math. Phys. 51, 103511 (2010).
83. L. Fehér and B.G. Pusztai,
Derivations of the trigonometric BC(n) Sutherland model by quantum
Hamiltonian reduction, Rev. Math. Phys. 22, 699-732 (2010).
82. V. Ayadi and L. Fehér, On the superintegrability
of the rational Ruijsenaars-Schneider model,
Phys. Lett. A 374, 1913–1916 (2010).
81. L. Fehér and C. Klimcik, On the duality between the hyperbolic Sutherland
and the rational Ruijsenaars-Schneider models,
J. Phys. A: Math. Theor. 42, 185202
(2009).
80. L. Fehér and C. Klimcik, Poisson-Lie generalization of the
Kazhdan-Kostant-Sternberg reduction, Lett. Math. Phys. 87, 125-138
(2009).
79. L. Fehér and B.G. Pusztai, Twisted spin Sutherland
models from quantum Hamiltonian reduction, J.
Phys. A: Math. Theor. 41, 194009 (2008).
78. L. Fehér and B.G. Pusztai, On the self-adjointness of certain reduced Laplace-Beltrami operators,
Rep. Math. Phys. 61, 163-170 (2008).
77. L. Fehér and B.G. Pusztai, Hamiltonian reductions
of free particles under polar actions of compact Lie groups,
Theor. Math. Phys. 155, 646-658 (2008).
76. L. Fehér and B.G. Pusztai, A class of Calogero
type reductions of free motion on a simple Lie group,
Lett. Math. Phys. 79, 263-277 (2007).
75. L. Fehér and B.G. Pusztai,
Spin Calogero models associated with Riemannian symmetric spaces
of negative curvature, Nucl. Phys. B 751,
436-458 (2006).
74. L. Fehér and B.G. Pusztai, Spin Calogero models and
dynamical r-matrices, Bulg. J. Phys. 33, 261-272 (2006).
73. L. Fehér and B.G. Pusztai, Spin Calogero models obtained
from dynamical r-matrices and geodesic motion, Nucl. Phys. B 734, 304-325 (2006).
72. L. Fehér, I. Tsutsui and T. Fülüp, Inequivalent quantizations
of the three-particle Calogero model constructed by separation of variables, Nucl. Phys. B 715, 713-757
(2005).
71. L Fehér,
Poisson-Lie dynamical r-matrices from Dirac reduction,
Czech. Journ. Phys.,
54, 1265-1274 (2004).
70. L.
Fehér and I. Marshall, The non-Abelian momentum
map for Poisson-Lie symmetries on the chiral WZNW phase space, Int. Math. Res.
Not., vol. 2004, no. 49, 2611-2636 (2004).
69. L.
Fehér and B.G. Pusztai, Explicit description of twisted Wakimoto
realizations of affine Lie algebras, Nucl. Phys. B 674, 509-532 (2003).
68. L. Fehér
and I. Marshall, Stability analysis of some integrable Euler equations for
SO(n), J. Nonlin. Math. Phys. 10, 304-317
(2003).
67. L.
Fehér, Dynamical r-matrices and Poisson-Lie
symmetries in the chiral WZNW model, JHEP Proceedings, PoS(unesp2002)012
(2002).
66. L. Fehér
and A. Gábor, Interpretations and constructions of dynamical r-matrices, pp.
331-336, in: Quantum Theory and
Symmetries, eds. E. Kapuscik et al (World
Scientific, 2002).
65. L.
Fehér, Dynamical r-matrices and the chiral WZNW phase space, Phys. Atomic
Nuclei 65, no. 6, 1023-1027 (2002).
64. L.
Fehér and I. Marshall, On a Poisson-Lie analogue of the classical
dynamical Yang-Baxter equation for self-dual Lie algebras, Lett. Math.
Phys. 62, 51-62 (2002).
63. L. Fehér
and A. Gábor, Adler-Kostant-Symes systems as Lagrangian gauge theories, Phys. Lett. A 301, 58-64 (2002).
62. L. Fehér
and B.G. Pusztai, Generalizations of Felder's elliptic dynamical r-matrices
associated with twisted loop algebras of self-dual Lie algebras, Nucl. Phys. B 621, 622-642 (2002).
61. L. Fehér
and B.G. Pusztai, Dynamical r-matrices on the affinizations of arbitrary
self-dual Lie algebras, Czech. J. Phys. 51, 1318-1324 (2001).
60. B.G. Pusztai and L. Fehér, A note on a canonical
dynamical r-matrix, J. Phys. A: Math. Gen. 34, 10949-10962 (2001).
59. L.
Fehér, A. Gábor and B.G. Pusztai, On dynamical
r-matrices obtained from Dirac reduction and their generalizations to affine
Lie algebras, J. Phys. A: Math. Gen. 34, 7235-7248 (2001).
58. J.
Balog, L. Fehér and L. Palla, The chiral WZNW phase space as a quasi-Poisson
space, Phys. Lett. A 277, 107-114 (2000).
57. L. Fehér
and B.G. Pusztai, The non-dynamical r-matrices of the degenerate Calogero-Moser
models, J. Phys. A: Math. Gen. 33, 7739-7759 (2000).
56. J.
Balog, L. Fehér and L. Palla, On the chiral WZNW phase space, exchange
r-matrices and Poisson-Lie groupoids, pp. 1-19, in: CRM Proceedings and
Lectures Notes, 26, eds. J. Harnad et al (AMS, 2000).
55. L. Fehér
and B.G. Pusztai, On the classical r-matrix of the degenerate Calogero-Moser
models, Czech. J. Phys. 50, 59-65 (2000).
54. L. Fehér
and A. Gábor, A note on the appearance of self-dual Yang-Mills fields in
integrable hierarchies, J. Nonlin. Math. Phys. 7,
423-432 (2000).
53. J.
Balog, L. Fehér and L. Palla, Classical Wakimoto
realizations of chiral WZNW Bloch waves, J. Phys. A: Math. Gen. 33, 945-956
(2000).
52. J.
Balog, L. Fehér and L. Palla, Chiral extensions of the WZNW phase space,
Poisson-Lie symmetries and groupoids, Nucl. Phys. B
568, 503-542 (2000).
51. J.
Balog, L. Fehér and L. Palla, The chiral WZNW
phase space and its Poisson-Lie groupoid, Phys. Lett. B 463, 83-92 (1999).
50. L.
Fehér, Wakimoto realizations of current and exchange
algebras, Czech. J. Phys. 48, 1325-1330 (1998).
49. F. Delduc, L. Fehér and L. Gallot, Integrable hierarchies in
the Drinfeld-Sokolov approach, pp. 251-253, in: Proc.
of the 5th Wigner Symposium, eds. P. Kasperkovitz et
al (World Scientific, 1998).
48. F. Delduc, L. Fehér and L. Gallot, Nonstandard Drinfeld-Sokolov reduction, J. Phys. A: Math. Gen. 31,
5545-5563 (1998).
47. W. Eholzer, L. Fehér and A. Honecker, Ghost systems: a vertex
algebra point of view, Nucl. Phys. B 518, 669-688
(1998).
46. J.
Balog, L. Fehér and L. Palla, Coadjoint orbits
of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A
13, 315-362 (1998).
45. J. de
Boer and L. Fehér, Wakimoto realizations of current
algebras: an explicit construction, Commun. Math. Phys. 189, 759-793 (1997).
44. L. Fehér
and I. Marshall, Extended matrix Gelfand-Dickey hierarchies: reduction to
classical Lie algebras, J. Phys. A: Math. Gen. 30, 5815-5824 (1997).
43. L. Fehér
and I. Tsutsui, Regularization of Toda lattices by Hamiltonian reduction,
Journ. Geom. Phys. 21, 97-136 (1997).
42. L. Fehér
and I. Marshall, Extensions of the matrix Gelfand-Dickey hierarchy from
generalized Drinfeld-Sokolov reduction,
Commun. Math. Phys. 183, 423-461 (1997).
41. J. de
Boer and L. Fehér, An explicit construction of Wakimoto
realizations of current algebras, Mod. Phys. Lett. 11, 1999-2011 (1996).
40. L. Fehér, KdV type systems and
W-algebras in the Drinfeld-Sokolov approach, in:
Proc. of the Marseille 1995 Conference on W-Symmetry, hep-th/9510001.
39. L. Fehér
and I. Tsutsui, Global aspects of the WZNW reduction to Toda theories, Prog.
Theor. Phys. Supplement 118, 173-190 (1995).
38. L. Fehér
and I. Tsutsui, Global aspects of the WZNW reduction to Liouville theory, pp.
483-486, in: Group Theoretical Methods in Physics, eds. A. Arima et al (World
Scientific, 1995).
37. F. Delduc and L. Fehér, Regular conjugacy classes in the Weyl
group and integrable hierarchies, J. Phys. A:
Math. Gen. 28, 5843-5882 (1995).
36. J. de
Boer, L. Fehér and A. Honecker, A class of W-algebras with infinitely generated
classical limit, Nucl. Phys. B 420, 409-445 (1994).
35. L.
Fehér, L. O'Raifeartaigh, P. Ruelle and I. Tsutsui,
On the completeness of the set of classical W-algebras obtained from DS
reduction, Commun. Math. Phys. 162, 399-431 (1994).
34. L.
Fehér, L. O'Raifeartaigh and I. Tsutsui, The vacuum preserving Lie algebra of a classical W-algebra,
Phys. Lett. B 316, 275-281 (1993).
33. L.
Fehér, J. Harnad and I. Marshall, Generalized Drinfeld-Sokolov reductions and KdV
type hierarchies, Commun. Math. Phys. 154, 181-214 (1993).
32. L.
Fehér, Generalized Drinfeld-Sokolov hierarchies and
W-algebras, pp. 71-82, in: Quantum Groups, Integrable Models and Statistical
Systems, eds. J. LeTourneux et al (World Scientific,
1993).
31. L.
Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui and
A. Wipf, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten
theories, Phys. Rep. 222, 1-64 (1992).
30. L. Fehér
and I. Tsutsui, On the Lagrangian realization of the
WZNW reductions, Phys. Lett. B 294, 209-216 (1992).
29. L.
Fehér, L. O'Raifeartaigh, P. Ruelle and I. Tsutsui,
Rational vs polynomial character of $W_n^l$-algebras,
Phys. Lett. B 283, 243-251 (1992).
28. L.
Fehér, W-Algebras of generalized Toda theories, pp. 255-272, in: A.D. Sakharov
Memorial Lectures in Physics, eds. L.V. Keldysh et al
(Nova Science Publishers, 1992).
27. L.
Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui and
A. Wipf, Generalized Toda theories and W-algebras associated with integral
gradings, Ann. Phys. (N. Y.) 213, 1-20 (1992).
26. J.
Balog, L. Dabrowski and L. Fehér, Nonstandard Quantum group in Toda and WZNW
theories, pp. 279-293, in: Nonperturbative Methods in Low Dimensional Quantum
Field Theories, eds. G. Domokos et al (World Scientific, 1991).
25. J.
Balog, L. Dabrowski and L. Fehér, A new quantum deformation of SL(3), Phys. Lett. B 257, 74-78 (1991).
24. J.
Balog, L. Dabrowski and L. Fehér, Classical r-matrix and exchange algebra in
WZNW and Toda theories, Phys. Lett. B 244, 227-234 (1990).
23. J.
Balog, L. Fehér, L. O'Raifeartaigh, P. Forgács and A.
Wipf, Kac-Moody realization of W-algebras, Phys. Lett. B 244, 435-441 (1990).
22. J.
Balog, L. Fehér, L. O'Raifeartaigh, P. Forgács and A.
Wipf, Toda theory and W-algebra from a gauged WZNW point of view, Ann. Phys.
(N. Y.) 203, 76-136 (1990).
21. B.
Cordani, L. Fehér and P.A. Horváthy, Kepler-type
dynamical symmetries of long-range monopole interactions, J. Math. Phys. 31,
202-211 (1990).
20. P.
Forgács, A. Wipf, J. Balog, L. Fehér and L. O'Raifeartaigh,
Liouville and Toda theories as conformally reduced WZNW theories, Phys. Lett. B
227, 214-220 (1989).
19. L.
Fehér, P.A. Horváthy and L. O'Raifeartaigh,
Applications of chiral supersymmetry for spin fields in self-dual backgrounds,
Int. J. Mod. Phys. A 4, 5277-5285 (1989).
18. M.G.
Benedict, L. Fehér and Z. Horváth, Monopoles and instantons from Berry's phase,
J. Math. Phys. 30, 1727-1231 (1989).
17. L.
Fehér, P.A. Horváthy and L. O'Raifeartaigh,
Separating the dyon system, Phys. Rev. D 40, 666-669
(1989).
16. M.G.
Benedict and L. Fehér, Quantum jumps, geodesics, and the topological phase,
Phys. Rev. D 39, 3194-3196 (1989).
15. L. Fehér
and P. A. Horváthy, Particle in a self-dual monopole
field, pp. 130-137, in: Differential Geometric Methods in Theoretical Physics,
ed. A. I. Solomon (World Scientific, 1989).
14. L.
Fehér, P. A. Horváthy and L. O'Raifeartaigh,
Dynamical (super-) symmetries of a self-dual monopole, pp. 525-529, in:
Symmetries in Science III, eds. B. Gruber et al (Plenum, 1989).
13. L. Fehér
and P. A. Horváthy, Dynamical symmetry of the
Kaluza-Klein monopole, pp. 399-417, in: Symmetries in Science III, eds. B.
Gruber et al (Plenum, 1989).
12. L. Fehér, Dynamical symmetries
of the Kaluza-Klein monopole, pp. 215-224, in: Relativity Today, ed. Z. Perjés (World Scientific, 1988)
11. L. Fehér
and P.A. Horváthy, Non-relativistic scattering of a
spin-1/2 particle off a self-dual monopole, Mod. Phys. Lett. A 3, 1451-1460
(1988).
10. B.
Cordani, L. Fehér and P.A. Horváthy, Monopole scattering
spectrum from geometric quantization, J. Phys. A: Math. Gen. 21, 2835-2837
(1988).
9. B.
Cordani, L. Fehér and P.A. Horváthy, O(4,2) dynamical symmetry of the Kaluza-Klein monopole,
Phys. Lett. B 201, 481-486 (1988).
8. L. Fehér,
Conformal O(3,2) symmetry of the 2-dimensional inverse
square potential, J. Phys. A: Math. Gen. 21, 375-378 (1988).
7. L. Fehér and P.A. Horváthy, Dynamical
symmetry of monopole scattering, Phys. Lett. B 183, 182-186 (1987).
6. L. Fehér,
The O(3,1) symmetry problem of the charge-monopole
interaction, J. Math. Phys. 28, 234-239 (1987).
5. L. Fehér, Dynamical O(4) symmetry in
long range monopole-test particle and monopole-monopole interactions, pp.
15-38, in: Nonperturbative Methods in Quantum Field Theory, eds. Z. Horváth et
al (World Scientific, 1987).
4. L. Fehér,
Dynamical O(4) symmetry in the asymptotic field of the
Prasad-Sommerfield monopole, J. Phys. A: Math. Gen. 19, 1259-1270 (1986).
3. L. Fehér,
Classical motion of coloured test particles along geodesics of a Kaluza-Klein
spacetime, Acta Phys. Hung. 59, 437-444 (1986).
2. L. Fehér,
Quantum mechanical treatment of an isospinor scalar
in Yang-Mills-Higgs monopole background, Acta Phys. Pol. B 16, 217-223 (1985).
1. L. Fehér,
Bounded orbits for classical motion of test particles in the Prasad-Sommerfield
monopole field, Acta Phys. Pol. B 15, 919-925 (1984).