Chapter 2

Previous Research and Scientific
Background

Optical lithography has been the primary patterning technology for IC production for
30 years [1]. The death of optical lithography has been often predicted by industry
pundits, incorrectly so far. At the present time, all non-optical lithography techniques
are far behind the overall production capability of optical techniques [2]. Nonetheless,
the fact remains that diffraction imposes limits on the potential of optical lithography.
The critical dimension (CD) and depth of focus (DOF') limits of optical lithography
can be given by the well-known Rayleigh equations [3, 4):
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where A is the illumination wavelength, N A is the numerical aperture of the projection
lens and k; and ks are system and process dependent parameters. There are two tradi-
tional ways to increase the spatial resolution of an optical system. The first approach is
the shrinking of the illumination wavelength [5, 6, 7, 8, 9]. A large international research
effort, informally coordinated by SEMATECH, is currently aimed at the transition from
present 248 nm KrF' excimer laser technology to the next generation 193 nm ArF ex-
cimer laser technology [10, 11, 12]. Pilot line tools will be available in 1999, and full
production is likely to begin in the 2002 time frame. Applying high numerical aperture
projection lens is the second approach to improve resolution. The practical limits of
NA are probably in the 0.7 to 0.8 range, considering the difficulty of lens fabrication

with the required low aberrations over large field sizes. However, the main limitation of
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these approaches is the decreased depth of focus. Many advanced and exotic techniques
for enhancement of both the resolution and the depth of focus have been invented over
the past 20 years (especially before a new generation is introduced), and a few of these
have been developed quite extensively [13, 14]. The principal requirements for these
techniques are: efficient resolution and DOF' enhancement, low price, and minimal
stepper modification. Figure 2.1 shows a schematic view of an optical stepper and the
insertion points of some resolution enhancement techniques. A high intensity UV light
source, such as a mercury arc lamp (g-line@436nm or i-line@365nm) or an excimer laser
(KrF@248nm or ArF@193nm) is used to illuminate the photo-mask. The illumination
beam is homogenized (producing a spatially uniform beam) and its spatial coherence
is controlled by means of the filter of the condenser lens. Using special condenser fil-
ters, different modified illumination techniques (off-axis illumination etc.) can be
introduced. The mask (or reticle) can be a simple binary chrome mask manufactured
by e-beam technology. Optical proximity correction (OPC) masks are more complex
chrome masks designed to compensate feature distortions (linewidth variation, line-end
shortening etc.) that occur during imaging [15, 16, 17]. OPC masks improve the quality
of the imaged pattern but do not enhance the resolution. Phase shifting masks, which

apply different phase shifting layers on the mask, significantly improve the resolution.
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Figure 2.1: Schematic structure of an optical stepper and insertion point of some super
resolution methods.



The most critical and expensive (> $1 million) part of a stepper is the projection lens.
A modern stepper lens may be a meter in length and weigh 300 kg or more. The imag-
ing performance of a lens is limited by diffraction ultimately, but aberrations could also
degrade the lens performance. Pupil-plane filtering techiques (Super-FLEX efc.) in-
troduce special amplitude-phase filters that modify the spatial Fourier components of
the mask pattern. However, the feasibility of these methods is questionable, since the
pupil-plane in microlithographic lenses is usually inaccessible. Application of top and
bottom anti-reflexion coatings (ARC) could further improve the image quality minimiz-
ing the undesirable interference effects inside the photo-resist. The chemical mechanical
polishing (CM P) method introduces an extra process step before every optical litho-
graphic exposure. During this process the surface is polished, therefore the topology
of the semiconductor structure does not limit the value of DOF seriously. A smaller
limit in DOF means that projection lens with larger N A can be used, and larger NA
means better resolution. The following four sections will focus on four super-resolution

techniques that were the most important for my research.

2.1 Modified Illumination Techniques

2.1.1 Spatial Coherence

The control of spatial coherence which affects the resolution and the depth of focus,
has historically been used to optimize the performance of a lithographic projection tool
[18, 19]. Spatial coherence (o) is defined as the ratio of the numerical apertures of the

condenser and projection lens’, respectively:
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Fully coherent illumination (¢=0) means that the mask is illuminated by a normally
incident plane wave. In this case the adjacent patterns interfere and undesirable high
intensity peaks could appear. The illumination is incoherent if the incident angle of the
continuous spectrum of plane waves ranges from -90° to +90°. If the incident plane waves
have a finite range (smaller than 90°) then the illumination is called partially coherent.
A typical value of spatial coherence in optical microlithography is around ¢=0.5. The
value of spatial coherence can be easily controlled by means of an adjustable aperture in
the condenser. Using partially coherent illumination the modified Rayleight resolution
limit is [20]:
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and the depth of focus for line-space patterns can be given as :
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where the pitch size means the period of a line/space pattern (line width + line separa-
tion). Optimization of spatial coherence is an important task in advanced lithography.
However, it is very difficult to arrive at an absolute statement, since it strongly depends
on the type of the structure. While the optimal imaging of contact holes requires rel-
atively small o, using equal line/space structures better imaging performance can be
obtained with higher ¢ value. In the present time every major manufacturer of step-
and-repeat projection lithography tools has introduced a ”flexible” stepper, a model

with variable numerical aperture and spatial coherence.

2.1.2 Off-axis Illumination

The three-dimensional aerial image of a lithographic projection system is influenced
by the method of illumination [21, 22, 23]. In classical projection systems, Kohler
configuration [24] is generally applied to illuminate the photo-mask. In this method
the source is imaged into the entrance pupil of the projection lens. Fig. 2.2 depicts a
comparison of conventional and off-axis illumination for line/space patterns. Using a
conventional illumination system, line/space patterns can be resolved if at least three
(the zero and the +1) diffraction orders contribute to the final aerial image. Using a lens
close to its resolution limit, the +1 diffraction orders transmit through the edge of the
aperture, while the higher intensity zero order falls in the middle of the aperture. The
intensity ratio of the beam diffracted into the zero and first orders for an ideal equal
line/space pattern (Ronchi grating) is known to be 1 : (2/7)?, resulting in an image
contrast of:

5 = 90.6%. (2.7)



And the cut-off frequency of the system is:

fcut—off = %ﬁ (28)
The second and higher diffraction orders are not transmitted by the lens, and they do
not contribute to the final image. Obviously, for features with a pitch size larger than
A/N A, higher diffraction orders must be considered.
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Figure 2.2: Comparison of conventional and off-axis illumination.

For off-axis illumination, the zero-order Fourier component of a mask pattern pro-
duces an off-axis spot of light in the pupil of the projection lens. One of the first-order
diffraction spots appears nearly symmetrically on the other side of the optical axis, and
the other first-order diffraction spot is lost. In an optimum case the cut-off frequency

improved to

feut—ofs = iﬁ, (2.9)
so that the smallest resolvable feature size doubled. However, the contrast of the image
degraded to 0.90, owing to the intensity difference between the zero and the first diffrac-
tion orders. Off-axis illumination improves both the resolution and depth of focus of
periodic patterns, however the effect of the illumination on the performance of isolated
lines is very small. " Two beam imaging” degrades the image contrast and reduces the
illumination power.

For most integrated circuit applications, features are limited to horizontal and ver-

tical orientation, and a quadrupole configuration may be more suitable. Poles are now
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only at diagonal positions with respect to horizontal and vertical mask features, and

each pole is off-axis to all mask features.

2.2 Phase Shifting Techniques

Control of the phase information at a mask may allow for the manipulation of the imaging
performance. Phase shift masking uses destructive and/or constructive interference to

improve the image quality of different feature types [25, 26].

2.2.1 Phase Shifting Techniques Using Phase Shifting Masks
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Figure 2.3: Phase shifting techniques.

Fig. 2.3 depicts five different phase shifting methods. The alternating phase shifting
mask (Fig. 2.3.a) proposed by Levenson and Shibuya in 1982 [27, 28], introduces a

7 phase difference between adjacent features. Due to destructive interference between

8



opposite fields, the final aerial image performance could be improved. In case of equal
line-space patterns, the zero order disappears and just the higher diffraction orders
contribute to the aerial image. In an optimum case, when the feature size is close to the
resolution limit of the optical system, only two diffraction orders (the +1 ones) generate
the image. However, this kind of "two beam” imaging does not degrade the image
contrast, since the intensity of the +1 diffraction orders is equal. The alternating phase
shifting method is a very candidate technique to improve the resolution and the depth
of focus of periodic structures. However, designing alternating phase shifting masks to
produce nonperiodic circuit patterns has proven difficult. To overcome this problem new
phase shifting approaches were developed that are able to improve the image quality of
both line-space patterns and isolated lines. The attenuated phase shifting method (see
Fig. 2.3.b) is by far the most candidate technique [29]. The mask structure is simple; it
contains only clear and attenuated/phase-shifting areas, respectively. The typical value
of attenuation is in the range of 4 to 15%. Chromeless phase shifting masks (Fig. 2.3.c)
contain only clear and phase shifted areas. Despite the fact that the phase shifting
layer is transparent at the applied wavelength, dark areas, called dark field gratings
can be produced. The period of these gratings is smaller than the resolution limit of
the projection lens. The first diffraction orders fall outside the aperture, and no light
diffracted on the dark field grating could pass through the lens. The outrigger and rim
phase shifting techniques (Fig. 2.3.d-e) are two other alternative solutions for image
quality improvement. Besides their advantages, the phase shifting methods suffer from

several issues that limit their applicability in optical microlithography [30, 31, 32, 33]:

1. Phase shifting mask design and optimization is a complex process.

2. Phase shifting mask manufacturing is a complicate, multi-step process. The devi-

ation from the optimum phase value cannot be larger than 5°.

3. Phase shifting mask repair is an important process since the printability of trans-
parent phase shifting defects is significantly higher than the printability of opaque
defects. Cleaning technologies are expensive and require special equipment.

Problems introduced by the phase shifting layers could be overcome by means of a

new phase shifting technique that does not apply any phase shifting layers on the mask.



2.2.2 Phase Shifting Method Without Phase Shifting Mask -
Interferometric Phase Shifting Technique

The interferometric phase shifting technique (I PST) proposed by Szabo, and demon-
strated by Kido in 1994 [34], uses a simple chrome mask that is illuminated from the
front and the back sides using a Mach-Zehnder interferometer (see Fig. 2.4).
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Theoretical and ex-
perimental results proved that the interferometric phase shifting technique has the simi-
lar resolution and depth of focus enhancement potential as the attenuated phase shifting
technique. Since I PST requires optics with high surface quality, the thickness of the
beam-splitter placed between the mask and projection lens is in the range of several
centimeters. Such a thick and tilted plane-parallel plate introduces serious optical aber-

rations (astigmatism, spherical aberration and coma) into the system [35].

2.3 Filtering Methods

Changing the amplitude and/or the phase condition of the transmitted light in the
aperture of the projection lens is a traditional method to enhance the aerial image

quality.

2.3.1 Image Formation Based on Fourier Optics

Aerial image calculation in photolithographic simulation tools such as in Prolith/2 or
in Solid-C is based on Fourier optics [36, 37], wherein the resultant electric field profile
is calculated as an inverse Fourier transform of the product of the Fourier transform

of the mask pattern (m(z,y)) and the coherent transfer function of the optical system
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(P(fz) £y)):
E(z,y) = 5~ {F{m(z,y)} - P(fz, f,)}, (2.10)

where (z,y) are spatial coordinates, (fy, f,) are spatial frequencies, and F and F~!
represent the Fourier and inverse-Fourier transforms, respectively. The properties of
the optical projection system (numerical aperture, optical aberrations, pupil-plane filter
etc.) can be described by means of the coherent transfer function. Advanced simulation

software is able to controll the spatial coherence of the illumination.

2.3.2 Pupil-Plane Filtering Techniques

The final image quality can be modified by introducing a filter into the Fourier plane
of the projection system (pupil plane filter). A complex filter changes the phase and
amplitude condition between the spatial Fourier components of the mask pattern, and
therefore has a deep influence on the aerial image.

The first major application of pupil-plane filtering technique in optical microlithog-
raphy is linked with the name of Fukuda. In 1991 [38, 39] he proposed a method called
Super-FLEX that could effectively enhance the depth of focus by a factor of 3, and
yields a resolution enhancement of 20% using contact hole patterns. The principle of
the Super-FLEX method is described in the following.

Assuming coherent illumination, the electric field (Ey(z, z)) of an image in the lateral
z, and axial z directions can be described by the equation of

Ey(z,2) = €@ /M(f) - Py(r, 2) - 2™ df, (2.11)

where ¢(z) is the phase of the light (= 47z/N A?), f is the spatial frequency normalized
by NA/X, M(f) is the spatial Fourier transform of the mask pattern, Py(r, z) is the
coherent transfer function of the system and the defocus (z) is normalized by 2)\/N A2

The coherent transfer function can be written as

mizr?

Py(r,z) = cire(r) - e , (2.12)

where r is the radial coordinate on the pupil-plane normalized by the pupil radius. The
superimposed electric field (Eyyq;) of two images defocused by z = +4 and phase shifted
by £A¢ can be written as
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Eia(z,2) = = - [emd’ cEy(z,z— B) + e . Ey(x, 2 + ﬁ)] . (2.13)

~ N

Substituting Equation (2.11) into Equation (2.13) the total electric field can be expressed

as
Etotal = eid)(z) : /M(f) ) PO(T7 Z) ) 008(27Tﬂ7“2 - g) ) e2mfwdf7 (214)
where
b =206 — " g (2.15)
- NA2™" '

The cos(2m3r? — £) term can be explained in two different ways. First, the ”extra” term
belongs to the coherent transfer function and it can be considered as a pupil-plane filter
(Super-FLEX I or spatial filtering method). Second, the ”extra” term is connected to the
mask function (Super-FLEX II or mask modulation method). The new mask is obtained
by the inverse-Fourier transform of M(f) - cos(2r3r? — 4). This second approach can
be considered as a special optical proximity correction (OPC) technique.

However, in practice it is rather difficult to produce a pupil-plane filter or photo-mask
with a complex and continuous transmission/phase distribution. Therefore simplified
filters and masks were used for the evaluation of the performance of Super-FLEX. It
was shown that both approaches enhance the image quality in the same manner. The
main limitation of the Super-FLEX method is that a pupil-plane filter cannot be inserted
into a modern lithography stepper without significant system modification that reduces
the lens performance.

In 1992 von Biinau et. al. [40] optimized an amplitude transmission pupil-plane filter
that produced an approximately constant on-axis intensity profile, while maintaining a
large value of energy within the central peak. The calculation applied scalar wave and
paraxial approximations regarded to the point-spread function of the optical system.
More complex patterns were not evaluated. The optimized amplitude filters were so
complex that their technical feasibility was questionable.

In 1995 Horiuchi et. al. [41] also used a transmittance-adjusted pupil-plane filter to
image different line-space patterns simultaneously. They managed to address some imag-
ing issues (pattern-end degradation and shrinkage in middle size patterns) by optimizing
the radii of the transmission zones of the pupil-plane filter.
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2.3.3 Annular Illumination

The intensity distribution near the focus of a projection lens with circular and annular
apertures has been theoretically investigated by several authors [42, 43, 44]. This section
summarizes the most important theoretical results.

Consider a lens of focus length f and let it be illuminated by plane waves of wave-
length A. The radius of the lens aperture is R. To describe the intensity distribution
near the focus two variables u and v are introduced which are defined as:

21 R? 2rR
u= v =

YA

where 7 is the polar coordinate (r? = 2%+ y?), and z is the axial distance from the focus

(2.16)

point.
The intensity distribution in the geometrical focal plane (u=0) is given by the well-

known Airy pattern:

1(0,v) = 4;;? (2‘]2(”))2, (2.17)

where J; is the first order Bessel function. The v value characteristic of the first dark

ring is 3.832. Thus the resolution power can be given as:

R
where NA== |=k;=061] (2.18)

The intensity distribution along the optical axis (v = 0) is:

I(u,0) =

Ar? R (sin(iu)>2 (2.19)

1
)\2f2 ZU
The argument of the sine function equals 7 in the case of the first minimum. DOF can

be expressed as the distance between the first minimum and the main maximum:

A
DOF =2~ =k, =2] (2.20)

If the central portion of the exit pupil is blocked out so that the aperture consists of an
annulus between circles R and eR — the obstruction ratio (€) can vary in the range from
0 to 1 — the intensity distribution in the focal plane becomes:
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1(0,v) = (2.21)

4m2RY (271 (v) 2 2J1(ev)\”
v €v '

22 f2 -
Equation (2.21) shows that the diffraction pattern of an annular ring is the diffraction
pattern of the whole aperture extending to the outer circumference, minus that of the
inner, opaque region. An increase of € leads to a decrease in the radius of the first dark
ring. As € tends to unity, the expression inside the bracket of Equation (2.21) tends
to (1 — €%)Jy(v), where Jy(v) is the zero order Bessel function of the first kind. In the
limiting case the FW HM of the Bessel beam is 1.6 times smaller than the FW HM of

the Airy pattern. The intensity distribution along the optical axis can be given as:

I(u,0) =

. 2
472 R (smiu(l —62)> | (2.29)

x2f2 Lu
A comparison of Eq. (2.22) with Eq. (2.18) indicates that the separation of the successive
dark points on the optical axis is increased by a factor of 1/(1—¢€?), and tends to infinity
as € tends to unity. Equations (2.21) and (2.22) show that the DOF' and resolution can
be enhanced simultaneously using an annular aperture. One of the main issues of this
technique is that an n-fold gain in focal depth leads to an n-fold loss in the intensity of

the illumination light.

2.3.4 Coated Objective

The theoretical investigation of the resolving power of a coated objective dates back to
nearly 50 years [45, 46, 47]. The problem of coating the objective in order to obtain
a diffraction pattern having the smallest central bright spot was studied by John W.
Y. Lit in 1971 [48]. He pointed out that the diffraction pattern in the focal plane of
the lens has the smallest bright spot when the aperture is divided into two zones, with
the inner zone having a phase retardation of 7 rad with respect to the outer one. The
transmission of both parts is unity. The total complex disturbance E(P) near the focus

using a simplified two-zone annulus shown in Fig. 2.5 is:

1 1

eik(f_op){T/eéi“‘ﬁJo(vQ)QdQ+ (T — T)62/6$iu192¢]0(1)’@)@d@} (2.23)
0 0

where: v = kR%z/f?, v = krR/f, k = 2m/)\, r = (2% + y?)'/2, o is the radius vector

in the observation surface, O is the geometrical focus, and T and T" are the amplitude

_ ikR?

E(P) 7
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Figure 2.5: General and simplified two-zone annulus

transmittance of the outer and the inner zones, respectively. With respect to T =€ =1

and T' = e'™ = —1, the intensity in the geometrical focal plane (u = 0) and along the

optical axis (v = 0) can be given as

2.24
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Figure 2.6: Intensity distribution in the focal plane and along the optical axis related to
the obstruction ratio. (R = 5mm; f = 25mm; A = 632nm)

The obstruction ratio strongly determines the intensity distribution in the focal re-

gion. In the case of e=0 and e=1 the intensity distribution on the focal plane is the
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well-known Airy pattern. If the obstruction ratio is increaded, the intensity of the main
central peak begins to decrease and reaches its minimum value (=0) when €=0.7. In this
case the area of the central circle equals to the area of the surrounding ring (e = 1/v/2).
If the value of € is further increased, the intensity of the central peak begins to increase
again. The intensity of the first diffraction ring grows continuously if € increases. The
intensity distribution on the optical axis related to € is also depicted. In case of e=0
and e=1 the axial intensity distribution can be described by a (sin(z)/z)* function.
There is a range of € where two foci appear. If we use the definition that DOF' is the
axial distance between the central main peak and the first minimum, a coated objective
always has a larger DOF' than an uncoated one, except when ¢=0.7.

2.4 Nondiffracting Beams

Non-diffracting beams represent a group of fields whose radial intensity distributions do
not change during their propagation. In 1987 Durnin [49] showed that the field described
by

E(r,z,t) = A - Jo(kyr) - efknz=b) (2.26)

is an exact solution of the wave equation, where k2 + kﬁ = w?/c?, and Jy is the zero
order Bessel function of the first kind. The field described by Eq. (2.26) represents a
non-diffracting beam because the transverse intensity distribution is independent of the
propagation distance (z). However, such an ideal beam cannot be realized experimentally
over large values of z and r, since this would represent a beam with infinite energy and
spatial extent [50].

In the last twelve years several experimental arrangements have been proposed to
create nearly non-diffracting Bessel beams and apply them in different domains of physics
[51, 52, 53, 54, 55]. The first arrangement to create a nearly nondiffracting Bessel beam
was also suggested by Durnin [56]. A circular slit (annular aperture) was placed at the
focal plane of a lens. The slit was illuminated with collimated light. Each point-like
source along the slit was transformed by the lens into a plane wave whose wave vector
lies on the surface of a cone around the optical axis. The maximum z value, for which
the plane waves intersect and thus form a nondiffracting beam, was Z,,, = D/tan®©,
where D is the radius of the circular aperture, and © is the angle that k& vector makes
with the z axis (tan© = k. /kparauer)- The maximum range of the Jy beam that could
be realized experimentally was 85 cm, and it could be fitted by numerical simulations.
In 1992 Cox et. al., [57, 58] based on the theoretical considerations by Indebetouw
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[51], produced a similar nondiffracting beam using a Fabry-Perot interferometer. The
ring system transmitted by the Fabry-Perot interferometer was collimated by a lens.
An annular aperture placed at the focal plane of the lens transmitted only the first
ring and blocked all the others. A second lens located after the spatial filter had the
same role as in the experiment reported in Ref [56]. It can be seen that the effective
nondiffracting range using such a setup is Z,,,, = 2F'd, where F' and d are the finesse
and the thickness of the etalon, respectively. In fact, nondiffracting beams have also
been generated by means of an axicon [59, 60], a holographic process [61, 62], and a new
type of laser cavity. It is worth noting that already a century ago it was recognized that
the diffraction pattern of a very narrow annular aperture can be described by the .J
function. However, previous work paid less attention to the depth of focus and therefore
did not describe such patterns in terms of nondiffracting beams. Only a few applications

of nondiffracting beams have been reported so far.
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