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Chapter 1

Introduction

During the course of my PhD research I have developed and applied computational

nuclear motion tools which make possible the variational determination of rovibra-

tional resonance sates of polyatomic molecules. Resonance, or quasi-bound, states of

a molecule are metastable states that have energy higher than the dissociation limit,

therefore the molecule can break up into subsystems, resulting in finite lifetimes of these

states.1 Resonance states play an important role in molecular spectroscopy2–6 and scat-

tering processes,7–12 and they often mediate complex chemical reactions.13–17 Their

experimental and theoretical investigation has been a hot topic in recent years;3–18

however, only scattering theory could offer computational techniques to determine

resonance states of molecules containing more than three atoms.6;10–12 In contrast to

the indirect techniques of scattering computations, variational determination of reso-

nances results directly in their energies and lifetimes.

During my PhD years I have developed a general variational code,19 which is ca-

pable of computing resonance energies and lifetimes, along with the visualization of

the resonance wave functions, without any constraint regarding the number of atoms

in the given molecule. The newly-developed code, named GENIUSH-CAP, utilizes

the bound states obtained from GENIUSH,20;21 a general rovibrational bound-state

computing program developed previously in our group, this way exploiting all the ad-

vantages of GENIUSH. I have successfully applied GENIUSH-CAP and studied the

resonance states of three weakly-bound systems: Ar·NO+,22 H2He+,19;23 and H2·CO,19
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H2·CO being the first four-atomic complex subjected to non-Hermitian variational res-

onance computation. With the help of GENIUSH-CAP, the detailed comprehensive

analysis of these systems has been carried out, providing valuable information about

the nature of their resonance states.

As an additional project, during the time of my PhD work I was also working on

the theoretical characterization of the four possible types of ion-aromatic ring interac-

tions, of wide biochemical interest, using sophisticated electronic structure methods.

However, this research does not form part of this thesis, in order to preserve the the-

sis’s uniformity. Interested readers of this thesis are asked to read the corresponding

scientific paper.24

In what follows, first, I give a brief introduction to the theory of nuclear motions,

particularly to the variational techniques used for determining rovibrational bound and

resonance states of molecules. After this, the details of the method development I have

carried out are presented, followed by the application of the new code to the weakly-

bound complexes Ar·NO+, H2He+, and H2·CO. Finally, a summary of the thesis and

my PhD work along with the main conclusions is given.

5



Chapter 2

Nuclear motion theory

2.1 Theoretical background

2.1.1 General aspects

Quantum chemistry is defined as the application of quantum mechanics to prob-

lems of chemical interest. It has two major branches, electronic structure theory and

nuclear motion theory. This separation is possible due to the Born–Oppenheimer ap-

proximation,25 which states that, since the mass of the electrons is at least three orders

of magnitude smaller than that of the nuclei, the faster motion of the electrons can

be separated from the much slower motion of the nuclei. Thus, the electrons move in

the field of steady nuclei, and nuclei see an average distribution of the electrons. This

approximation provides the concept of the potential energy surface (PES), which can

be obtained by solving the Schrödinger equation of electronic motion at many different

configurations of the nuclei, and fitting a functional form to these computed energy

points. The PES obtained governs the motion of the nuclei. Using this procedure

other so-called property surfaces, such as dipole moment surfaces, can be obtained, as

well.

The time-dependent Schrödinger equation (TDSE), the fundamental equation of

non-relativistic quantum mechanics, describes the behavior of a quantum system over

6



time. However, in many applications only stationary solutions are sought, which can

be obtained by solving the time-independent Schrödinger equation (TISE) after sep-

arating the time and space variables of TDSE. In most of the electronic structure

problems, only the lowest stationary states are of interest, since in general only a few

excited electronic states of a system play a role in chemical processes. In contrast,

in nuclear motion theory many rotational-vibrational-electronic (rovibronic) station-

ary states should be determined, e.g. to decipher infrared or microwave molecular

spectra. Nevertheless, several chemical problems of wide interest are also addressed

through the time-dependent approach, such as strong field interactions26–30 or reactive

scattering.31–34

In nuclear motion theory stationary states can be viewed from two basically differ-

ent aspects. Spectroscopy treats these states as eigenstates of the system’s Hamiltonian

supported by the given PES. The simplest form of such a PES is a quadratic surface,

which is assumed in the framework of the harmonic oscillator model (detailed be-

low). However, real molecules feature anharmonic PESs and one or more dissociation

asymptotes. Another way to think of stationary states of a molecule in motion is the

dynamical point of view of scattering theory, which primarily characterizes station-

ary states by their asymptotic behavior. Even without taking time dependence into

account, based only on propagation in space, the approach considering two colliding

moieties can yield stationary states of weakly-bound complexes if suitable boundary

conditions are imposed for the coupled differential equations of scattering theory. This

approach, however, does not work well for strongly bound systems, where the poten-

tial well is surrounded by steep barriers. Nevertheless, in the case of ”intermediate”

systems featuring a shallow potential well along one dissociation channel, both of the

above approaches can provide accurate solutions. Weakly-bound van der Waals com-

plexes fit perfectly into this category and can be studied by both time-independent

scattering and spectroscopic methods, as it will be shown later in this thesis. Several

methods of time-dependent quantum dynamics35–38 have also been developed and are

widely used for investigating molecular motions; however, these are out of the scope

of this thesis.

Analytic solution of the TISE of real atoms, ions, and molecules without any ap-

proximation can only be obtained for the H-atom, whereas highly accurate numerical
7



solutions were provided for a few other systems: He,39 H+
2 ,39;40 H2,41 HeH+,42 H+

3 ,43

and their isotopologues. Thus, introducing approximations is essential for studying

even few-atomic chemically interesting systems. Besides the above outlined corner-

stone of quantum chemistry, the Born–Oppenheimer approximation, other approx-

imations should also be applied to solve the TISE for both the electronic and the

nuclear motions.

Regarding the internal motions of a molecule, i.e., its vibrations and rotations,

two simple models have been emerged from the very beginning for the interpretation

of molecular spectra. One is the harmonic oscillator (HO) approximation, where an

N -atomic nonlinear(linear) molecule is considered as a multidimensional harmonic

oscillator, leading to the decoupled problem of 3N − 6(3N − 5) individual oscillators,

with the 3(2) rotational and the 3 translational degrees of freedom separated and the

3N−6(3N−5) normal coordinates introduced. Along the normal coordinates the atoms

of the molecule vibrate harmonically, i.e., with the same frequency and the same phase,

but with different amplitudes. These vibrations are called normal vibrations. Normal

coordinates can be obtained by applying a unitary transformation on mass-weighted

Cartesian atomic displacement coordinates so that the transformation matrix contains

the eigenvectors of the mass-weighted Hesse matrix. The other basic model concerns

rotations and is called the rigid rotor (RR) approximation. Within the RR model,

since molecular rotations are much slower than vibrations, the molecule is treated as

a rigid body during rotation, with the rigid structure corresponding to a vibrationally

averaged geometry of the molecule.

However, the vibrations of a real molecule are far from being harmonic. Thus, more

accurate models had to be developed to investigate molecular motions. Within the

above sketched “static” approach involving the determination of the eigenstates of the

system’s Hamiltonian, two basic paths have been paved: variational or perturbation

theories. The essence of the former is that the energy levels of a system are searched

by means of the variational principle, which states that they are equal to the exact

energy only in the case of using the exact wave functions corresponding to the chosen

Hamiltonian; otherwise, the calculated energy values are upper bounds to the real

(exact) ones. The perturbative approach is based on the assumption that the system of

interest is only slightly different from an already known one, for which the solutions of
8



the TISE are available; thus, the energy levels of the perturbed system can be obtained

by adding a correction term to the Hamiltonian of the known system. Increasing the

orders of the perturbation can be considered, which provide more and more accurate

energy levels, if the series of correction terms converges. In contrast to the variational

method, this procedure does not necessarily provide an upper bound to the energy

levels when the order of the perturbation is increased.

Perturbation-based methods are of course available to determine rovibrational

bound energy levels; however, they provide results only of limited accuracy. The most

popular of them is the method of vibrational perturbation theory carried out to second

order (VPT2).44;45 This method employs quartic force fields and normal coordinates.

Nevertheless, if one wants to determine first-principles (rotational-)vibrational energy

levels of molecules with high accuracy, the use of methods based on the variational

principle becomes necessary.

During my PhD research I have developed and employed tools of variational nuclear

motion theory, in order to determine resonance, or quasi-bound, states of polyatomic

systems, located above the first dissociation threshold. In the framework of the tech-

nique I worked with the computation of all the bound eigenstates of the system is

necessary. Therefore, in the forthcoming sections the fundamentals of the variational

determination of rovibrational bound and resonance states will be presented, along

with a brief introduction to close-coupling scattering theory, since its results had been

compared to my variational ones.

2.1.2 Variational nuclear motion computations

The basic idea behind the variational determination of energy levels is the expansion

of the exact wave function (ψ) in a suitable basis set {ϕi}:

ψ ∼=
N∑
i

ciϕi, (2.1)

where ci are linear combination coefficients. Then, the TISE,

Ĥψ = (K̂ + V̂ )ψ = Eψ, (2.2)
9



Figure 2.1: Generalized internal coordinates of the three-particle systems proposed by
Sutcliffe and Tennyson,46 with A, B, and C denoting the particles. S, P , and Q are
defined in the text, below Eq. 2.4.

where Ĥ denotes the Hamiltonian of the system, K̂ and V̂ are the kinetic and the po-

tential energy operators, respectively, ψ is the exact wave function, and E is the exact

energy, results in the following matrix equation (assuming that ϕi form an orthonormal

set):

Hc = Ec, where Hij = ⟨ϕi| Ĥ |ϕj⟩ (2.3)

In order to apply variational nuclear motion theory to a rotating and vibrating molec-

ular system, tho following should be considered: (1) the choice of the most suitable

coordinate system for describing the nuclear motions, (2) building the kinetic energy

operator in the chosen coordinate system, (3) determination of the PES, (4) the opti-

mal choice of the basis set in which the rovibrational wave functions are expanded, (5)

the method of evaluating the matrix elements of the H Hamilton matrix in the chosen

basis set, and (6) the diagonalization of H to obtain the required eigenpairs.

To treat the vibrational problem, it is usual to employ internal coordinates,

whereby, after the exact separation of the three translational degrees of freedom, the vi-

brational motion can be described by 3N–6(5) coordinates in the case of an N -atomic

nonlinear(linear) molecule. If the rotational motion is not separated, a body-fixed

frame has to be attached to the molecule. As rotational coordinates, usually the three

so-called Euler angles47 are applied, describing the orientation of the body-fixed frame

with respect to the laboratory-fixed frame. The internal coordinate system is always

chosen to properly describe the vibrational motions of the system, and for this, chem-

ical intuition is often necessary. A frequently used coordinate system for triatomic

molecules and complexes are the orthogonal Jacobi coordinates,48 which can be de-

rived from the general coordinate system of triatomic molecules, proposed by Sutcliffe
10



and Tennyson,46 sketched in Figure 2.1. The Jacobi coordinate system forms, when

g1 = mB

mA +mB

and g2 = 0, (2.4)

where, mA and mB are the masses of the particles A and B, respectively,

g1 = (A − P )/(A − B) and g2 = (A − S)/(A − C). The definition of Jacobi coor-

dinates is r = B − S, R = C − P , and θ = BQC. The Jacobi coordinate system can

also be generalized to more than three atoms. Other coordinate systems for triatomics

can be derived from the Sutcliffe–Tennyson coordinates, as well, such as the orthogonal

Radau,49 or the non-orthogonal valence bond coordinates. Further internal coordinate

systems, based on chemical intuition, can also be applied for the vibrational problem,

e.g., normal coordinates.

The kinetic energy operator T̂ of the system then should be expressed in terms of

the chosen coordinates. This can be easily done in Cartesian coordinates; however, in

internal coordinates T̂ usually has a rather complicated form. Derivation of the exact

kinetic energy operators in terms of various coordinates for several types of systems

is often a research project in itself, for which many examples can be found in the

literature.46;50–53

The potential energy operator of a molecule cannot be given exactly, the PES

is represented by an analytic function fitted to electronic energy points computed

at many different nuclear configurations. Since the converged variational results of

the nuclear motion problem are the numerically “exact” solutions corresponding to

the given PES, the accuracy of the PES has a major effect on the accuracy of the

computed rovibrational energy levels. Similarly to the derivation of kinetic energy

operators, developing a PES often forms a distinct research topic.

As expressed in Eq. (2.1), a basis set is used to expand the exact vibrational

wave function. If the problem is multidimensional, a multidimensional basis should

be employed, which can be a direct product of one-dimensional basis functions, or a

non-direct-product basis, e.g. when coupled one-dimensional functions are considered.

In vibrational problems, usually orthogonal polynomials (with appropriate damping

functions assuring square integrability) are chosen as basis functions, such as Legendre,
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Laguerre, or Hermite polynomials. For rotations, usually the rigid rotor eigenfunctions

of the symmetric top or their symmetry adapted versions are employed.

The next challenging task is to determine the matrix elements of the Hamiltonian

in the chosen basis, see Eq. (2.3). For this, there are various options. For example,

the variational basis representation (VBR) might be used, which determines all the

integrals defining the matrix elements analytically. In the finite basis representation

(FBR) these integrals are not exact, but are calculated numerically, e.g., employing

the Gaussian-quadrature technique.54 Grid techniques are also frequently employed in

nuclear motion theory, a particularly favored technique is the discrete variable repre-

sentation (DVR).55–58 To apply DVR, one possible choice is to take an orthonormal

basis set, usually orthogonal polynomials, and build the (Q) coordinate matrix in this

basis. Then, the diagonalization of this matrix, by solving

QT = Tq (2.5)

provides the so-called transformation matrix, T, and the diagonal q matrix contain-

ing the quadrature points, which are the roots of the nth polynomial in the case of

using n standard orthogonal polynomials indexed as 0, 1, 2, ..., n− 1. By transforming

the kinetic and the potential energy matrices, built in FBR, with the transformation

matrix, one obtains the DVR of the Hamiltonian:

HDVR = TTKFBRT + Vdiag, (2.6)

A major advantage of using DVR is that in DVR the matrix of the potential energy op-

erator, or that of any operator depending only on the coordinates, can be approximated

to be diagonal.55 This is an essential feature of DVR, because it makes it possible to

apply arbitrary forms of potential energy functions. It can be proven,56 since the eigen-

values of Q are the Gaussian quadrature points, that the eigenvalues of the Hamilton

matrix are the same as if they are determined with the Guassian-quadrature method

in FBR; whereas the eigenvectors in DVR are the unitary transforms of the ones ob-

tained in FBR. It has been shown that the above described, so-called transformation

method gives matrix elements of Gaussian quadrature accuracy even in the case of

general bases.59
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The final step of a variational method is the computation of the requested eigenval-

ues and eigenfunctions of the Hamilton matrix. This can be done by different methods.

Direct diagonalization techniques can be used if the computation of all the eigenvalues

is possible and desirable. Two disadvantages of these techniques are that the elements

of the Hamilton matrix have to be stored, which could require a considerable amount

of memory and that the computational cost of direct diagonalization methods increase

rapidly with the increasing dimension of the Hamilton matrix. Thus, for the diagonal-

ization of rovibrational Hamilton matrices, often having extremely large dimensions,

such direct methods cannot be applied. However, since we do not need to compute all

the eigenvalues of these matrices, iterative diagonalization methods can be applied ef-

ficiently. These techniques require the evaluation of a limited number of matrix-vector

products; thus, they have lower computational cost. In rovibrational computations

the Lanczos iterative eigensolver60 is the most widely used method, which is capable

of computing thousands of eigenpairs efficiently. If only a few eigenpairs need to be

determined, the Davidson algorithm,61 widely employed in electronic structure theory,

can be applied.

Eigenvalues and eigenstates of a rotating-vibrating molecule cannot only be deter-

mined variationally below the first dissociation threshold, but even (high) above this

energy. For this, several procedures have been developed, their introduction will be

the subject of the following sections. Nonetheless, before that let us take a brief detour

towards scattering theory.

2.1.3 Close-coupling scattering theory

One way to treat the problem of two colliding “particles”, e.g., an atom scattered

on a molecule, or the collision of two small molecules, is to solve the so-called close-

coupled equations of scattering theory.62–66 This technique, being somewhat off-topic

from the methods used in the present thesis, is introduced because some of my results

are compared to those obtained from close-coupling computations.

In the close-coupling procedure the scattering wave function is expanded in a com-

plete set of internal states of the system, usually constructed as direct products of
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the internal states of one (or both) fragments, multiplied by angular functions which

describe the rotation of one collision partner with respect to the other. The internal

states are called channels, referring to the possible starting points and outcomes of the

scattering process. Substitution of the expanded wave function into the TISE results

in a set of coupled ordinary differential equations. These equations are solved by prop-

agation along the intermolecular distance, which can be the R Jacobi coordinate in an

atom-diatom scattering process, starting from small R values at the interaction region

of the potential to values of R so large that the potential becomes negligible. This has

to be done at many values of the J quantum number characterizing the total angular

momentum of the system, until the centrifugal potential keeps the colliding particles

beyond the range of the interaction potential. The solution yields the so-called scat-

tering matrix, from which differential and integral cross sections can be computed at

all values of J . State-to-state cross sections, corresponding to given initial and final

states, can also be obtained from the scattering matrix.

2.2 Variational determination of rovibrational

bound states

2.2.1 Different protocols

Based on the previously outlined pivots of the variational determination of rovibra-

tional bound states of a system, various types of concrete computational algorithms

can be derived. Indeed, many different variational nuclear motion algorithms and cor-

responding computer codes have been developed in the past few decades. In contrast

to the softwares available for electronic structure computations, nuclear motion codes

are much less black-box type. Since the kinetic energy operator should be expressed in

different sets of internal coordinates for each system studied and basis functions should

also be adapted to the various types of internal coordinates, traditionally variational

nuclear motion codes have been constructed specifically for the chosen systems and

coordinates.
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There are two major groups of variational nuclear motion codes: the first involves

programs based on rectilinear coordinates, while the members of the other group use

curvilinear internal coordinates. The second group is much more suitable for describing

large-amplitude motions, and therefore only such codes are employed in the case of

weakly-bound, flexible molecules or complexes.

Representatives of the first branch are as follows: the MULTIMODE code, de-

veloped by Carter and co-workers,67 and the DEWE code developed in our group.68

Both codes use Eckart–Watson-type Hamiltonians expressed in normal coordinates.

MULTIMODE employs a FBR of the rovibrational Hamiltonian, and approximates

the PES in a so-called N -mode representation. In contrast, DEWE uses the DVR

technique to represent the vibrational Hamiltonian and hence the PES can be invoked

without approximations. Both codes are general in a sense that they can be applied, in

principle, without any constraint regarding the number of atoms; however, they cannot

efficiently treat floppy molecules and those having a PES with multiple minima.

Several variational rovibrational codes employing curvilinear coordinates for de-

scribing the molecular vibrations, mainly those having large amplitudes, have been

developed. Many of these use tailor-made Hamiltonians, i.e., Hamiltonians expressed

analytically in a given internal coordinate system, such Jacobi or Radau coordinates.

Triatomic codes of this kind are DVR3D, developed by Tennyson and co-workers,69;70

and DOPI71 or D2FOPI72 from our group. Similar codes for molecules containing

more than three atoms are also available.73–77

Since results obtained with the D2FOPI program will be presented later in this the-

sis, let us briefly outline the important features of this code. It employs the Sutcliffe–

Tennyson Hamiltonian in orthogonal curvilinear internal coordinates, (Figure 2.1). It

uses DVR in case of the radial coordinates, and FBR for the angular coordinate. (Un-

like DOPI, which uses DVR for all three coordinates.) The Hamiltonian is represented

in a direct product basis for the vibrational problem; however, when molecular rota-

tions are present, associated Legendre polynomials are used on the vibrational angular

coordinate, which are coupled to the symmetric rigid rotor eigenfunctions describing

the rotational motion. The eigenpairs of the resulting Hamilton matrix are computed

employing a Lanczos iterative eigensolver.
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A general protocol to determine accurate rovibrational energy levels of floppy

molecules would allow to choose arbitrary coordinate systems, i.e., the most appro-

priate ones to represent the vibrational motions of the molecule of interest. Several

attempts have been made to develop such codes, e.g. by Luckhaus and co-workers,78–81

Lauvergnat et al.,82;83 Yurchenko et al.,84 and Makarewicz.85 It is obvious that only

this class of nuclear motion codes can possibly be developed into black-box-type pro-

grams, similar to the highly successful electronic structure codes. In the following

section, a general algorithm of this type will be introduced, which I employed during

my rovibrational bound-state computations. It is named GENIUSH and was developed

in our group.20;21.

2.2.2 GENIUSH

GENIUSH20;21;86 is a general (GE) protocol to determine rovibrational states by

numerically (N) representing the kinetic energy operator of the system in internal co-

ordinates (I), and using an iterative Lanczos eigensolver to determine the eigenpairs

of the user-specified Hamiltonian (USH). This code does not involve any explicit con-

straints regarding the number of atoms in the molecule.

In GENIUSH the rovibrational Hamiltonian Ĥrv of an N -atomic molecule, after

the separation of the translational motion, is represented by the following formula, the

so-called Podolsky form,87 where D ≤ 3N − 6 coordinates describe the vibrational

motions of the system:

Ĥrv = 1
2

D+3∑
k,l=1

g̃−1/4p̂kGklg̃
1/2p̂lg̃

−1/4 + V̂ , (2.7)

where V̂ is the potential energy operator, g̃ = det g, G = g−1 and g is the rotational-

vibrational metric tensor

gkl =
N∑

i=1
mi
∂XT

i

∂qk

∂Xi

∂ql

, k, l = 1, 2, . . . , D + 3, (2.8)

mi are the atomic masses, Xi refers to the 3N−3 rectilinear laboratory-fixed Cartesian

coordinates (the translational motion is separated), and qk denotes the D internal
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coordinates. The body-fixed Cartesian coordinates of the ith nucleus, xia, can be

derived from Xia using

Xia =
∑

a

Caaxia, (2.9)

where a = X,Y,Z the axes of the laboratory-fixed frame, a = x, y, z are those of

the body-fixed frame and Caa is the orthogonal direction cosine matrix between the

laboratory-fixed and the body-fixed frames.

The momentum, p̂k, conjugate to q̂k, has the form

p̂k = −i~ ∂

∂qk

, k = 1, 2, . . . , D, and (2.10)

p̂D+1 = Ĵx = −i~ ∂

∂α
, p̂D+2 = Ĵy = −i~ ∂

∂β
, p̂D+3 = Ĵz = −i~ ∂

∂γ
, (2.11)

where i is the imaginary unit, Ĵa with a = x, y, z are related to the projection of the

total angular momentum operator, Ĵ , on axis a of the body-fixed frame, and α, β,

and γ denote the angles characterizing the instantaneous orientation of the body-fixed

frame with respect to the laboratory-fixed frame, thereby describing the rotation of

the molecule.

For the numerical construction of the kinetic energy operator the so-called t-vector

formalism is employed, which requires the computation of the first derivatives of the

body-fixed Cartesian coordinates in terms of the internal coordinates, ∂xia/∂qk. The

t-vectors are constructed as20;21

tiak = ∂xia

∂qk

, k = 1, 2, . . . , D, and (2.12)

tiaj+D = (ej × xi)a, j = 1(x), 2(y), 3(z), (2.13)

where ej denotes the unit vector pointing along the jth axis of the body-fixed frame

and xi refers to the body-fixed Cartesian coordinates of the ith nucleus. Elements of

the g matrix can then be given in terms of the t-vectors as follows:

gkl =
N∑

i=1
mi

∑
a

tiaktial =
N∑

i=1
mitT

iktil. (2.14)
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The rotational-vibrational coupling elements of the g matrix can be given as

gk,j+D =
N∑

i=1
mi
∂xT

i

∂qk

(ej × xi), where k = 1, 2, .., D, and j = 1, 2, 3. (2.15)

Reduced-dimensional models can be straightforwardly introduced by constraining

some of the internal coordinates to a constant, usually their equilibrium values. This

means that the corresponding rows and columns of the g matrix vanish. In order to

get energy levels independent of the chosen coordinate system one must introduce the

constraints for the internal coordinates before inverting the g matrix, thereby fixing

them “physically”, instead of reducing the G matrix, which would refer to constraints

for the momenta. For the case of reduced-dimensional models I have made it possible

in GENIUSH to carry out the relaxation of the PES, i.e., finding the optimal value

of the inactive coordinate(s) corresponding to the lowest potential energy, while the

other (otherwise active) coordinates are held frozen. This feature is available for one-

and two-dimensional constraints.

To represent the Hamiltonian of the system of interest, DVR is used, employing

orthogonal polynomials, such as Laguerre, Hermite or Legendre polynomials or Fourier-

DVR basis functions, e.g., for torsional motions. Due to the use of DVR, every quantity

in the Hamiltonian operator depending only on the coordinates, most importantly the

PES, is represented by a diagonal matrix. As rotational basis, the 2J + 1 orthonormal

Wang-functions47 are used, which are the symmetrized versions of the symmetric-top

rigid rotor eigenfunctions.

Finally, to obtain numerous eigenpairs of the rovibrational Hamiltonian, an effective

Lanczos iterative eigensolver is used. It is developed so that the explicit construction

of the Hamilton matrix built in the large direct-product basis is avoided.
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2.3 Introduction to resonance states

2.3.1 The resonance phenomenon

Resonance, or quasi-bound, states are defined as metastable states of a system

that has sufficient energy to break up into its subsystems.1 However, the resonance

phenomenon can also be approached from the dynamical point of view indicated in

Section 2.1. Within this approach resonance states can be defined as states of a target-

particle system having lifetimes longer than that of a direct collision process.1 In this

case resonances can be observed as a sudden increase in the collisional cross Section

occurring at a certain energy. A characteristic feature of resonance states is that they

decay exponentially in time. Theory of resonances was first derived by Gamow in 1928

concerning the case of the α-decay of heavy nuclei.88

Besides their prominent role in spectroscopy2–6 and scattering processes,7–12 reso-

nances are also closely related to reaction dynamics. They are essential in mediating

complex chemical reactions,13–17 and are also of importance for unimolecular reac-

tions89–91 as well as in photodissociation processes.29;92;93 It has recently been shown

that monitoring a quantum scattering resonance in an ionization reaction allows for

quantifying the anisotropy of an atom-molecule collision.18

In molecular physics, usually two types of resonances are distinguished. One type

occurs e.g. when a particle is temporarily trapped by a potential barrier, and its

decay rate is determined by the shape of this potential and the mass of the particle.1

These resonance states are called shape-type resonances. In such a case, the lifetime

of the resonance state is defined by the height and width of the barrier. Occurrence

of a shape resonance is a purely quantum mechanical phenomenon, e.g. it is based

on tunneling through the potential barrier. A simple example is when the potential

barrier appears due to the rotational excitation of the molecule. Another example for

a shape resonance is radioactive decay.

The other, so-called Feshbach-type resonances usually occur for many-particle sys-

tems (or for a single particle in a more-than-one-dimensional potential).1 A Feshbach-
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type resonance can be described as a bound state of an unperturbed Hamiltonian,

embedded in its continuum, which becomes metastable due to the coupling (perturba-

tion) with the continuum.1 (Such a state resembles a bound state, because it is local-

ized in the interaction region of the potential.) In other words, for such a resonance

the excess energy is stored in a non-dissociative degree of freedom. If the subsystems

are divided, that is when dissociation occurs, the coupling potential vanishes. Within

the scattering approach such a resonance state can be treated as a bound state of a

closed channel of the many-particle scattering target, which becomes open due to the

coupling with the scattered particle/system. Examples of Feshbach-type resonances

are those occurring during autoionization following photo-excitation.1;94

Overall, resonances play an important role in molecular spectroscopy and in scat-

tering phenomena, as well as in the dynamics of chemical reactions. They can be

observed in several cases via spectroscopic means;2–6 however, the experimental work

need to be augmented with theoretical interpretations and predictions. During the

past decades various methods have been developed to determine resonance states,

both within the time-dependent17;95 and in the time-independent5;96–98 framework of

quantum mechanics. Some of the time-independent methods will be presented in what

follows, after introducing resonance states on a mathematical ground.

2.3.2 Derivation of resonance states

To interpret resonance states in the framework of a physical-mathematical ap-

proach,1;99;100 let us consider first the time-dependent Schrödinger equation of a free

particle scattered in a central potential V (r), i.e., a potential only depending on the

distance r from the origin (e.g., the Coulomb potential):

i~∂Ψ(r, t)
∂t

= ĤΨ(r, t), (2.16)

where i is the imaginary unit, ~ is the reduced Planck constant, m is the mass of the

particle, and the wave function has the form

Ψ(r, t) = ψ(r) exp((−i/~)Et), (2.17)
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where ψ(r) is the eigenfunction of the time-independent Schrödinger equation:

(
− ~2

2m
∆ + V (r)

)
ψ(r) = Eψ(r). (2.18)

Eq. (2.18) can be given in a rearranged form, after introducing the variables

k2 = (2m/~2)E and U(r) = (2m/~2)V (r)

∆ψ(r) + (k2 − U(r))ψ(r) = 0, (2.19)

where ∆ is the Laplacian and r refers to the coordinates of the particle. Since a central

potential is considered, it is advantageous to use spherical polar coordinates, where

the wave function can be searched for in the following form

ψ(r) = R(r)Y (ϕ, θ), (2.20)

where ϕ and θ are the polar angles. After this separation of variables, one comes

to the problem of several one-dimensional differential equations for the radial part of

the wave function, corresponding to different l values, which characterize the angular

momentum of the system:

∂2χl(r)
∂r2 +

(
k2 − U(r) − l(l + 1)

r2

)
χl(r) = 0, l = 0, 1, 2, .... (2.21)

The stationary wave function, corresponding to a given l value, has the form

ψl(r) = 1
r
χl(r)Y m

l (ϕ, θ), (2.22)

where Y m
l (ϕ, θ) are the spherical harmonics. In the scattering problem, the asymptotic,

i.e., r → ∞, form of Eq. (2.21) is of interest, since in experiments the detection of

a scattered particle takes place far from the scattering center. This asymptotic form

can be written as

∂2χas
l (r)
∂r2 + k2χas

l (r) = 0, l = 0, 1, 2, .... (2.23)

At such large distances the interaction potential becomes negligible, and the particle

behaves like a free particle, with the corresponding general solution of the Schrödinger
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equation:

χas
l (r) = Al(k) exp(ikr) +Bl(k) exp(−ikr). (2.24)

The χl functions are characterized by a given l value, and consist of an outgoing (first

term) and an incoming (second term) wave. Based on Eq. (2.24) three different cases

can be derived, due to different boundary conditions imposed to the problem:

(1) If one intends to obtain the bound states of the system, one should impose

boundary conditions that ensure χl to be square integrable (∈ L2), and therefore be in

the Hilbert space. For such a function space, the Hermitian Hamiltonian will have real

eigenvalues. This holds if E < 0, where E = 0 is the threshold energy of dissociation,

therefore k is pure imaginary and can be written as k = iλ, if λ ̸= 0. This way, only the

first (let us consider λ > 0) term can be non-zero, otherwise the wave function would

diverge at infinity. Thus, the wave function of a bound state decays exponentially at

the asymptotic region, and has the form

χas
l (r) = Al(k) exp(−λr). (2.25)

(2) Scattering or continuum states are not square integrable; therefore they are

not members of the Hilbert-space. However, for their analogous treatment another

normalization condition can be introduced, the so-called Dirac-delta normalization,

which demands the wave function to be finite at infinity. For this, the boundary

conditions must be met with E > 0, and thus the terms in Eq. (2.24) will be incoming

and outgoing waves.

(3) In the case of resonance states, the boundary conditions imposed must be

consistent with a system decaying in time into its subsystems. This can be achieved

if the wave function has no incoming parts. To describe the exponential decay of

resonances in time, from Eq. (2.17) it follows that E must be complex. Consequently,

the eigenfunctions of the Hamiltonian will not be members of the Hilbert space, whose

asymptotic form can be given as

χas
l = Al(k) exp(ikr) (2.26)

22



Since initially we assumed a particle scattered by a central potential, the so-called

scattering S matrix is worth introducing, which connects the initial and final states of

asymptotically free particle(s) that undergo a scattering process. S(k) can be defined

as the ratio between the amplitude of the outgoing and the incoming wave:100

S(k) = Al(k)/Bl(k) (2.27)

In our model case S(k) is only one dimensional. A general form of S(k) can be given

as:1

S(k) = exp(i2δ(k)), (2.28)

where δ(k) is termed the phase shift of the unitary S matrix, which is the phase change

induced by the interaction potential in the asymptotic regions of the scattering wave

function, and is a central quantity in studying scattering processes.62 S(k) can have

poles in the following cases:100 (1) If Al(k) has a pole, but these are independent of

the potential, and exist even when the potential becomes negligible; thus, these are

“false” poles. (2) If the amplitude, Bl(k), of the incoming wave vanishes. If these

poles are on the positive imaginary axis of the complex k-plane (i.e., on the negative

real axis of the complex energy-plane), they are associated with bound states, while

the poles embedded in the fourth-quadrant of the k-plane (Re(k) > 0 and Im(k) < 0)

correspond to resonance states. Branch cuts of the S matrix can be associated with

the opening of new scattering channels.62

Near the nth isolated pole, S(k) can be written as100

S(k) ∝ 1
(k − kn)

and dlnS(k)
dk

= −1
(k − kn)

. (2.29)

It can be shown100 that a closed contour integration of this derivative on the complex

k-plane provides the number of the poles, N , in the fourth-quadrant of the k-plane.

Then, the density of states, ρ = dN/dE, can also be determined. The local maxima

of the density of states, having a Lorentzian shape, is obtained as100

ρmax(k = Re(kn)) = (−2πIm(En))−1 (2.30)

and the full-width half-maximum of the nth Lorentzian peak, which gives the inverse
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of the lifetime of the resonance state, Γn, is

Γn = −2Im(En) (2.31)

Thus, the complex eigenvalue corresponding to a resonance state is

Eres = En − iΓn

2
, (2.32)

where En is called the resonance energy, or “position”, and ~/Γ is the lifetime of the

given resonance state.

The complete asymptotic form of the resonance wave function of our model prob-

lem, corresponding to one pole of the S-matrix, can be given as100

Ψas
l = 1

r
χas

l (r)Y m
l (ϕ, θ) exp

(
− i
~
Et
)

=

Y m
l (ϕ, θ)Al(k)

r
exp(iar) exp(br) exp

(
− i
~

(
En − iΓn

2

)
t
)

=

Y m
l (ϕ, θ)Al(k)

r
exp

(
i
(
ar − En

~
t
))

exp(br) exp
(

−Γn

2~
t
)
,

(2.33)

where

a =
(2m
~2

)1/2 (
E2

n +
(
Γn

2

)2)1/4

cos(ζ)

b = a tan(ζ)

ζ = 1
2

arctan
(
Γn

2En

)

It is transparent from Eq. (2.33) that Γn is the inverse lifetime of the nth resonance

state, and Γ > 0 ensures the characteristic exponential decay in time. En > 0 also

holds (resonances have higher energy then the dissociation threshold), which forces

b > 0, meaning that the resonance wave function diverges along the r coordinate.

This derivation of resonance states can be generalized to multiple dimensions as

one chooses the dissociation or reaction coordinate, along which the decay proceeds,

as r.
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2.4 Computation of resonance states

In this Section different time-independent approaches will be presented, which are

widely used for determining resonance energies and lifetimes. After a brief outline of

such techniques in scattering theory, three variational methods are introduced, two

non-Hermitian procedures, i.e., the complex coordinate scaling and the complex ab-

sorbing potential technique, and a Hermitian one, the stabilization method. Time-

dependent methods also exist to identify resonance states,17;95 although such tech-

niques are beyond the scope of this thesis.

2.4.1 Scattering techniques

Scattering resonance-computing codes, based directly on the determination of the

scattering matrix, provide collisional cross sections as a function of energy, in which

resonance states are indicated by peaks at certain energies, including several values

of J , the total angular momentum quantum number of the system. The contribution

of different state-to-state cross sections, characterized by transitions between states

unambiguously labeled by different quantum numbers, to the total cross section, can

also be obtained. For example, in a three-dimensional problem, i.e., in the case of an

atom-diatom collision, these labels can be l and j values, with |j−l| ≤ J ≤ j+l, where

the l quantum number characterizes the relative orientation of the colliding fragments,

while j is related to the rotation of the diatomic molecule. Total cross sections can

also be decomposed to so-called partial waves, characterized by a given J value.

Peaks in the cross sections can then be approximated with Lorentzian-type func-

tions, e.g., the Breit-Wigner formula,62 from which resonance energies and lifetimes

can be extracted. Lifetimes of resonance states can also be determined by computing

the eigenvalues of the so-called Smith lifetime matrix.101 Also, the phase shift of the

scattering matrix, introduced in Eq. (2.28), plotted against the energy can be used to

obtain resonance positions and widths, since it changes by π when the energy of the

system coincides with the resonance position. In the case of asymmetric line shapes in

the cross sections, the Feshbach–Fano102 formula can be applied to extract resonance

25



properties.

2.4.2 Complex coordinate scaling

Resonance wave functions, as shown in Eq. (2.33), diverge at infinity and as such,

they are not the member of the L2 Hilbert space. However, by applying a trans-

formation on the TISE, these functions can be transformed to be square-integrable

functions, with the complication that the new Hamiltonian, of which the transformed

states are the eigenfunctions, will be complex. Following such a procedure, one can ob-

tain the complex eigenvalues of resonance states, with corresponding square-integrable

eigenfunctions.

One way to make the resonance wave functions square integrable is to apply a

similarity transformation on the Hamiltonian.1;100 Such a transformation can be chosen

as the following, so-called complex scaling operator:

Ŝϑ = exp
(

iϑr ∂
∂r

)
, (2.34)

which rotates the argument of the function, i.e. the dissociation coordinate, on which

it is applied by ϑ on the complex plane.

Let us give some mathematical insight into this so-called complex coordinate scaling

(CCS) procedure. We start from the TISE of the system,

ĤΨres = EresΨres, (2.35)

with Ψres diverging at infinity and Eres being the exact (complex) resonance eigen-

value. Let the Schrödinger equation be the subject of the above defined similarity

transformation, performed by the invertible Ŝ operator:

ŜĤŜ−1ŜΨres = EresŜΨres. (2.36)

It can be shown that ŜΨres will be square integrable for certain values of ϑ. It is also

known that continuum states are rotated by 2ϑ under such a transformation.100 From
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an illustrative point of view, the complex scaling of the dissociation coordinate makes

the poles of the scattering-matrix, embedded in the fourth quadrant of the complex

plane, “visible”. If a new scattering channel opens, i.e., at a certain energy, continuum

states above this energy become rotated by 2ϑ, thereby revealing the poles (resonances)

above the new channel.

The new complex Hamiltonian, ŜĤŜ−1, with square integrable eigenfunctions, is

then suitable be built in an L2 basis, and then diagonalized, providing the complex

resonance eigenvalues located between the real axis and the rotated continuum. This

procedure should be carried out for several values of ϑ while so-called ϑ trajectories

form on the complex plane, in which stationary points reflect the resonance eigenvalues.

Modified versions of the complex coordinate scaling also exist,1;100 such as the so-

called exterior complex scaling, useful for non-analytical potentials. This technique

involves the rotation of the dissociation coordinate in external regions of the PES

where it is negligible, or can be approximated by an analytic function. The so-called

smooth exterior scaling smooths out the transition from a non-scaled region to the

scaled region.

After the generalization of the inner product and the variational principle to the

complex non-Hermitian formalism,1 one can use the conventional computational meth-

ods that were originally developed for Hermitian problems. It is noted that the complex

generalized variational principle provides an upper bound neither for the real nor for

the imaginary part of the resonance eigenvalue when these are computed using a trial

wave function.

2.4.3 The complex absorbing potential technique

The complex absorbing potential (CAP) method98;103–105 is also based on making

the original rovibrational Hamiltonian complex, having square-integrable eigenfunc-

tions and complex eigenvalues, which can be associated with the resonance energies

and inverse lifetimes. The reason for such a transformation, as outlined in Section

2.2, is that several types of well-developed variational bound-state-computing codes

are available, based on standard L2 techniques, and one prefers to stay on the ground
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of such standard methods.

In the CAP technique the transformation of the resonance eigenfunctions into

square-integrable functions is achieved by adding a complex potential to the origi-

nal Hamiltonian, Ĥ:

Ĥ
′(η) = Ĥ − iηŴ (R), (2.37)

where W is a real valued function of the R dissociation coordinate assuming nonzero

values at the asymptotic region of the PES, and η is the so-called strength parameter

of the CAP. Adding the CAP to the Hamiltonian makes the resonance eigenfunctions

damped at the asymptotic region of the PES; thus, they become similar to square-

integrable functions. The new Hamiltonian, Ĥ ′(η) will be complex, like in the case of

the CCS technique, and its eigenvalues will approximate the resonance eigenvalues.

Damping the resonance wave function allows for its expansion in an L2 basis, which

consists usually of the eigenfunctions of the original Hamiltonian. After building the

complex symmetric Hamiltonian in this basis, it is diagonalized providing the required

resonance eigenpairs. The obtained eigenvalues (along with the eigenfunctions) are

approximate, as, of course, the addition of the CAP changes the exact resonance

eigenvalues. This effect can be described as a power series in η:103

E(η) = Eres + c1η + c2η
2 + . . . (2.38)

If we used an infinite basis to expand the resonance wave function, this would be the

only difference with respect to the exact eigenvalues. However, in real computations

one employs a finite basis, which also causes an error with respect to the exact reso-

nance eigenvalues. This error is also a complex valued function of η.103 If the η strength

parameter is increased, the first error occurring due to the CAP, also increases, as seen

from the power series in Eq. 2.38. In contrast, the second error decreases with in-

creasing η, since if we use a stronger CAP to damp the wave function, it will be

more resemblant to a square-integrable function, thus will be more suitable to an L2

expansion, which manifests in a smaller basis set error.

Thus, in practice, one should build and diagonalize the complex Hamilton matrix at

many different values of η, starting from a large value, where the first error dominates,
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to a sufficiently small value, where the basis set error will be large. Then, a trajectory

forms on the complex plane corresponding to each eigenvalue, where each point of the

trajectory belongs to one η value. Based on the above discussion, there must be an

optimal value for η, where the total error is minimal. This point is called a stability

point, and it manifests as a higher density region of eigenvalues. At this point a cusp

in the trajectory also occurs, which can be explained by the fact that the two complex

valued errors have different phases, and thus approach the stability point from different

directions.103 Consequently, this stability point provides the best approximation to the

exact resonance eigenvalue.103

In applications for real systems it may be necessary to take more than one dissocia-

tion paths into account; in this case multiple dissociation coordinates can be introduced

and treated with the CAP method separately.

It has been shown100;106 that the complex absorbing potential method is closely

related to the exterior or smooth exterior complex scaling techniques.

The major advantage of the CAP technique lies in its straightforward generalizabil-

ity. As seen above, the complex coordinate scaling method requires the rotation of the

dissociation coordinate in the complex plane, thereby modifying all the terms in the

original Hamiltonian that depend on this coordinate. In contrast, the complex absorb-

ing potential does not even require the knowledge of the Hamiltonian in an analytic

form, which makes it particularly advantageous for general algorithms, mentioned in

Sections 2.2.1 and 2.2.2, which construct the kinetic energy part of the Hamiltonian

numerically, this way being capable of treating arbitrary coordinate systems. Linking

this technique to such a general code makes the transition to larger systems possi-

ble, since deriving the analytical form of the Hamiltonians of large systems becomes

increasingly difficult. During my PhD work, I have linked the CAP method to the GE-

NIUSH bound-state-computing program and successfully applied it for weakly-bound

complexes, among which,to the best of my knowledge, H2·CO was the first four-atomic

system subjected to a non-Hermitian variational resonance computation.
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2.4.4 The stabilization method

It is shown in detail in Ref. 1 that a resonance state, within the Hermitian formalism

of quantum mechanics, is associated with a collection of continuum states (or a wave

packet) and not with a single stationary solution of the Schrödinger equation. Those

continuum states are identified as a resonance state, whose energy, E, is within the

range Eres − Γ/2 < E < Eres + Γ/2. These states are shown to be localized in the

interaction region of the potential, and appear more and more densely, as their energy

approaches Eres. This approach works best for narrow resonances, i.e., those having

long lifetimes.

The stabilization method is based on the high density of continuum states around

a resonance energy. It has been noticed,96;100;107 that the eigenenergies of the system’s

Hamiltonian, determined variationally depending on a certain parameter, are changed

when this parameter is varied, but remain stable in the vicinity of a resonance energy.

This can be visualized by discretizing the continuum energies by constraining the

corresponding wave functions into a box, with length L. In such a case, since the

states that have an energy close to the resonance energy are localized in the interaction

region, they are affected only minimally as the size of the box varies. In contrast,

the delocalized continuum states oscillating with a large amplitude, along with the

corresponding (now discrete) energy levels are strongly affected by the variation of

the L parameter. Thus, if we plot the energies of the variational solutions of the

Hamiltonian at certain values of L, crossing of energy levels is expected to be observed.1

However, these levels will not cross in most cases due to the identical symmetry of

the corresponding states, hence one observes avoided crossings close to the resonance

energies.1 If a sufficiently large basis is used for the variational computations, the

lifetime of a given resonance state can be determined from the variation of the energies

in the vicinity of such avoided crossings.

The concrete procedure of the stabilization method96;107;108 thus involves the mon-

itoring of the eigenvalues obtained from several (ro)vibrational bound state compu-

tations above the first dissociation asymptote, while the range along the dissociation

coordinate is extended. The resonance eigenvalues can be made converged with respect
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to changing the basis set size and the extension along the dissociation coordinate107.

Based on the above discussion, in the vicinity of resonance energies an accumula-

tion of energy levels, obtained from computations performed with different maximal

extensions along the dissociation coordinate, is observed. Resonances are therefore

associated with energies that are adopted by several eigenvalues while the range along

the dissociation coordinate is changed. This increased density of energy levels can

be made clearly visible when shown on a histogram based on binning, whereby those

eigenvalues, computed by using different R ranges, are counted that adopt an energy

value within the given bin.

During the course of my PhD research I have identified several resonance states

with the help of the stabilization method, complementing the results obtained from

non-Hermitian computations.
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Chapter 3

GENIUSH-CAP

3.1 The algorithm and its implementation

During my PhD research I have augmented the toolbox of the GENIUSH rovi-

brational bound-state computing code20;21;86;109 with the CAP technique,98;103–105 to

allow the determination of resonance states of flexible, polyatomic molecules. The

newly developed code is called GENIUSH-CAP, and is written in C++ language.

GENIUSH, as mentioned, computes the (ro)vibrational bound eigenvectors, which

are used as a basis set in the GENIUSH-CAP computations. This allows one to

exploit all the advantages of GENIUSH. the use of arbitrary coordinate systems for, in

principle, molecules or complexes of arbitrary size. Weakly-bound systems featuring

large-amplitude motions, the target molecules of my investigations, can also be treated

efficiently in this protocol. Furthermore, the simple definitions of reduced-dimensional

models, where the non-active internal coordinates are fixed to certain, usually their

equilibrium, values are also possible.

The CAP method, as mentioned above, involves the perturbation of the original

rovibrational Hamiltonian of GENIUSH with a complex potential, which damps the

resonance eigenfunctions of the system in the asymptotic region of the PES. As intro-
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duced in Eq. (2.37), the modified Hamiltonian can be written as

Ĥ
′(η) = Ĥ − iηŴ (R), (3.1)

where i is the imaginary unit, and Ŵ (R) is a real valued function of the R dissociation

coordinate. As a consequence of the addition of the CAP, as discussed above, the res-

onance wave functions become resemblant to square-integrable functions. This makes

it possible to use the L2 eigenvectors obtained from solving the eigenvalue problem

of the original real symmetric Hamiltonian as basis functions during the resonance

computations. Thus, the resonance states are searched in the form

Ψres =
∑
i=1

aiΦGEN,i, (3.2)

where ai ∈ C, Ψres is the resonance wave function, and ΦGEN,i is the ith eigenvector with

an eigenenergy either below or above the first dissociation asymptote, computed with

GENIUSH. Despite having no real physical meaning, ΦGEN,i with energies above the

first dissociation limit serve well as L2 basis functions for expanding the resonance wave

functions and covering the desired energy range of resonance states to be identified.

In GENIUSH, rovibrational eigenstates are obtained as linear combinations of the

direct products of DVR vibrational basis functions and rotational basis functions:

ΦGEN,i(q(1), q(2), ..., q(N), α, β, γ) =
∑

kl...m

J∑
K=−J

ci
kl...m,K χ

(1)
k (q(1))χ(2)

l (q(2))...χ(N)
m (q(N))CJKM(α, β, γ),

(3.3)

where q(1), q(2), ..., q(N) refer to the N active coordinates used in the given compu-

tation, and χ
(1)
k , χ

(2)
l , ..., χ(N)

m denote the DVR functions on each active coordinate.

CJKM(α, β, γ) refer to the 2J + 1 (J is the rotational quantum number) orthonormal

Wang functions used as rotational basis functions21;47 depending on the α, β, γ angles

which describe the rotations around the axes of the body-fixed frame. K = −J, ..., J

is related to the projection of the total angular momentum Ĵ of the system onto the

body-fixed z axis, andM = −J, ..., J is the projection of Ĵ onto the space-fixed Z-axis.

In the GENIUSH-CAP program we assume that M = 0. The matrix elements of the

new complex Hamiltonian represented in the {ΦGEN,i} basis can be obtained as follows:
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H
′(η)ij = ⟨ΦGEN,i| Ĥ

′(η) |ΦGEN,j⟩ = Eiδij − iη ⟨ΦGEN,i| Ŵ |ΦGEN,j⟩ , (3.4)

where Ei is the ith eigenvalue of the original Hamiltonian. Exploiting the orthogonality

of the GENIUSH eigenvectors, one only needs to determine the matrix elements of the

complex potential in the basis of these vectors:

Wij =
∫ q

(1)
max

q
(1)
min

∫ q
(2)
max

q
(2)
min

...
∫ q

(N)
max

q
(N)
min

∑
kl...m

∑
k′ l′ ...m′

J∑
K=−J

ci
kl...m,Kc

j

k′ l′ ...m′ ,K

χ
(1)
k (q(1))χ(2)

l (q(2))...χ(N)
m (q(N))Ŵ χ

(N)
m

′ (q(N))...χ(2)
l
′ (q(2))χ(1)

k
′ (q(1))

dq(1)dq(2)...dq(N)ξ(q(1)q(2)...q(N)).

(3.5)

Since Ŵ is independent of the α, β, γ angles, the integration over these variables can

be performed trivially, and due to the orthonormality of the Wang functions47 this

results in δKK′ , where δ is the Kronecker delta symbol. ξ(q(1)q(2)...q(N)) refers to the

volume element of the integration. To evaluate this integral we employ the Gaussian

quadrature method using the q(1)
a , q

(2)
b , ..., q(N)

c DVR grid points as quadrature points.

Thus, we transform this integral to a sum, where advantages of the DVR technique

can be exploited:

Wij =
∑
ab...c

∑
kl...m

∑
k′ l′ ...m′

J∑
K=−J

wawb...wc c
i
kl...m,Kc

j

k′ l′ ...m′ ,K

χ
(1)
k (q(1)

a )χ(2)
l (q(2)

b )...χ(N)
m (q(N)

c )W (qa, qb, ...qc)χ
(N)
m′ (q(N)

c )...χ(2)
l′

(q(2)
b )χ(1)

k′ (q(1)
a ),

(3.6)

where the wawb...wc are the quadrature weights. Using the DVR of the original Hamil-

ton matrix implies that58

χk(qa) = w−1/2
a δka. (3.7)

Due to Eq. (3.7), the following simple formula is obtained for the elements of the

complex Hamilton matrix:

H
′(η)ij = Eiδij − iη

∑
ab...c

J∑
K=−J

ci
ab...c,Kc

j
ab...c,KW (qa, qb, ...qc). (3.8)

After building the complex Hamilton matrix, it is diagonalized with a direct diago-

nalization method, invoked from the Lapack++ package.110 Avoiding the use of an

iterative eigensolver is possible due to the relatively small dimension of the matrix.
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One should diagonalize the complex matrix at many values of η, and plot these

eigenvalues, having the form E − iΓ/2, on the complex plane. Then, a visual analysis

follows, in which one identifies cusps in the eigenvalue trajectories, and associates them

with resonance energies and lifetimes.

To gain further information of a resonance state determined with the GENIUSH-

CAP procedure, I have developed a tool, a code also written in C++, to visualize

the resonance wave functions. For this, Eqs. (3.2) and (3.3) are used, and the square

of the absolute value of the complex Ψres vector corresponding to the cusp η value,∑J
K=−J |∑i aic

i
ab...c,K |2, is plotted along two selected coordinates (the other coordinates

are held fixed at given, usually their equilibrium, values). Such a visualization of the

resonance eigenvectors can provide a qualitative understanding of the studied reso-

nance phenomenon, since the nodal structures of the resonance wave functions reveal

valuable information for the given state.

The newly developed GENIUSH-CAP code has been tested and validated by com-

paring its results, using the H2He+ molecule as a test system, to resonance energies and

lifetimes obtained from complex coordinate scaling computations, which utilized the

D2FOPI-CCS program, developed previously in our group.5 These results are pre-

sented later in this thesis, in Section 5.3, put in the context of the resonance-structure

of H2He+.

3.2 Parameters of the GENIUSH-CAP computa-

tions

To obtain the desired resonance eigenvalues from GENIUSH-CAP computations,

one can change and optimize several parameters:

• The range where the CAP is turned on, i.e., the length of the so-called CAP-

active interval along the dissociation coordinate, which is a sensitive parameter

for finding certain resonance states, depending on their nature of delocalization.

• The functional form of the CAP.
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• The interval of the η parameter, which usually covers many orders of magnitude,

depending on the given system.

• The number of η values used in one computation, thereby setting the ”resolution”

of the eigenvalue trajectories.

• The number of GENIUSH eigenvectors as basis functions.

In what fallows, the choice of these parameters will be detailed in each case of a

system studied. Here, just a few remarks are made regarding the technical details of

the GENIUSH-CAP computations:

(1) The functional form of the CAP has been chosen to be a polynomial with

an order of 1, 2, 3 or 5, optimized by Poirier and Carrington.111 Employing different

functional forms during test computations usually proved to have only a minimal effect

on the results; thus, the results presented throughout this thesis were usually obtained

by using the highest-order polynomial of Ref. 111.

(2) In GENIUSH-CAP the η CAP-strength parameter is distributed according to

the following exponential112 function within a given interval:

ηj(ηmin, ηmax, n, j) = ηmin − 1 + exp[log((ηmax − ηmin) + 1)j/(n− 1)], (3.9)

where ηj is the jth value of η, n is the number of η values, and ηmin and ηmax are the

minimum and maximum values of the given η interval, respectively.

(3) In the case of resonance computations on weakly-bound systems an advantage

is that it is sufficient to compute a low number of bound states. However, in the case of

more strongly bound molecules, it might be possible to exclude a number of low-energy

bound eigenvectors from the basis used for the CAP computation. It is also necessary

to compute a sufficient number of GENIUSH eigenvectors above the first dissociation

limit to fully describe the energy range of the resonance states sought. Such eigenstates

have no real physical meaning; this might be the reason why it can sometimes be a

challenging task to converge them with the iterative Lanczos algorithm.
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Chapter 4

The nuclear dynamics of the

Ar·NO+ complex below and above

dissociation

4.1 Importance of the Ar·NO+ complex

Weakly-bound triatomic systems involving a strongly-bound diatomic, AB, and

a rare gas atom (Rg = He, Ne, Ar, Kr) loosely attached to it113–117 represent ideal

benchmark systems to study van der Waals interactions. Due to their weakly-bound

nature, Rg·AB complexes are excellent subjects to study the dynamical consequences

of the adiabatic separation of the diatomic vibrational degree of freedom. In the

case of Rg·AB systems the fundamental frequency of the diatomic fragment is much

higher than the first dissociation energy of the complex, which is often only a few

tens of cm−1. The shallow potential well of Rg·AB complexes also provides a good

chance to obtain results bridging molecular scattering and spectroscopy. Molecules and

complexes involving rare gases are also of interest in the study of cold collisions,118 as

well as in astrophysics.119–121

There are many possible variants of the diatomic molecule involved in Rg·AB com-

plexes. For example, AB can be neutral or charged. As examples of neutral complexes

the He·CN,122 He·CO,123 He·HF,124 Ne·H2,125 Ar·NO,126–128 and the Rg·halogen129–131
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systems can be mentioned. If AB has a positive charge, the bonding to Rg, through

stronger polarization, may become relatively strong and the first dissociation energy

drastically increases, up to several hundred cm−1. This leads to a relatively large num-

ber of bound rotational-vibrational states for the ground electronic state and perhaps

more interesting and involved dynamical behavior.132;133 The charged molecular species

investigated include, for example, Ar·NO+,134–145 ArmH+,146 and ArmHCl+.147;148

During my PhD research I have studied the nuclear dynamics of the relatively

strongly bound Ar·NO+ complex both below and well above the first dissociation

asymptote.

This investigation offers several challenges:

• Because of the shallow potential well and the low barrier to end-over-end hin-

dered internal rotation of the monomers, Rg·AB van der Waals complexes are

particularly floppy and exhibit large amplitude motions upon excitation. This

invalidates the use of anharmonic force fields149 and standard vibrational per-

turbation theory44;45 treatments for dynamical studies; for this class of systems

variational treatments on accurate global PESs are mandatory.

• Bound vibrational energy levels have been obtained for Ar·NO+ in experimental

studies.134;141 These low-resolution results call for a theoretical interpretation

based on energies and wave functions obtained from variational computations.

• Rovibrational resonance states have neither been computed nor measured for

Ar·NO+. However, as it will be shown shortly, these states highlight very inter-

esting physical phenomena.

Besides investigating the rovibrational bound-states of Ar·NO+, the main empha-

sis in this thesis is on the study of its resonance states above the first dissociation

asymptote, NO+(X1Σ+) + Ar, using both Hermitian and non-Hermitian variational

techniques. Results are also compared to those obtained with molecular scattering

methods, and experiments, where possible.
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4.2 Computation of bound and resonance states

4.2.1 The potential energy surface

An accurate 3D PES developed in Ref. 145 for the ground electronic state of

Ar·NO+ was employed to study the dynamics of the Ar·NO+ complex. The equi-

librium structure of Ar·NO+ on this PES can be conveniently represented by the

standard Jacobi coordinates, r, R, and θ, which are also used to describe the vibra-

tional motions of the complex: r denotes the distance between the N and O atoms, R

is the distance of Ar from the center of mass of the NO+ unit, and the θ angular coor-

dinate is the included angle of the two vectors. Ar·NO+ is an approximately T-shaped

molecule with the Ar atom lying on the N side. The precise equilibrium structural

parameters of the Ar·NO+ complex, calculated from the 3D PES,145 are re = 2.013377

bohr, Re = 5.858267 bohr, and θe = 66.6638◦. The pure electronic dissociation energy

corresponding to this PES is De = 980.35 cm−1 , while the corresponding D0 is 887.00

cm−1 .

4.2.2 Scattering computations

Details about the close coupling (CC) computations, performed by Professor

Thierry Stoecklin and utilizing the code called Newmat,150 can be found in Ref. 145.

A few details of the computation of both the bound and resonance states are given

below. The Newmat code uses the so-called log derivative propagator.151 During the

study of Ar·NO+ a step size of 0.01 bohr along the R dissociation coordinate was em-

ployed. The minimum and maximum propagation distances were 4.0 and 50.0 bohr,

respectively. With the CC technique, (ro)vibrational (J = 0, 1, and 2) bound states

and vibrational (J = 0) resonance states have been obtained.

It must be noted that Ar·NO+ has a very complex resonance structure; thus, per-

forming the partial wave expansion of the cross sections obtained from CC computa-

tions would have been tedious. Therefore, resonance positions and widths were not ex-

tracted this way from the CC computations but rather the profile of the cross sections
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was compared with the positions of the resonances obtained with GENIUSH-CAP.

Nevertheless, the eigenvalues of the so-called close-coupling Smith lifetime matrix101

were also determined following the method of Ref. 152 and compared to the lifetime

values obtained from GENIUSH-CAP computations.

4.2.3 GENIUSH bound-state computations

Bound rovibrational energy levels of Ar·NO+ were obtained with the GENIUSH

code by using 20 and 100 Laguerre-DVR grid points for the r and R coordinates scaled

to the ranges of [1.68, 2.64] bohr and [4.0, 40.0] bohr, respectively. For the angular

coordinate 40 unscaled Legendre-DVR grid points are employed for J = 0. Due to the

use of Legendre-DVR on the angular coordinate even in the J > 0 case, which is not

coupled to the rotational basis, for J > 0 an increased number, 110, of Legendre-DVR

points had to be used. For the J > 0 rovibrational computations the R embedding and

a basis extended with 2J + 1 orthonormal Wang functions is used. One- (fixed R and

θ) and two- (fixed r) dimensional models were also applied to explore the coupling of

the vibrational degrees of freedom in the Ar·NO+ complex. The inactive coordinates

were fixed at their equilibrium values. The rovibrational states were then characterized

by counting the nodes of the computed wave functions, obtained from GENIUSH.

4.2.4 GENIUSH-CAP parameters

To variationally determine numerous resonance states of the Ar·NO+ complex, the

GENIUSH-CAP code was employed. During the GENIUSH-CAP computations, the

range of the R dissociation coordinate where the CAP was switched on was varied

between 15-50 bohr, by increasing the starting value of the interval with a step size of

5 bohr. Choosing the appropriate CAP-active range of the dissociation coordinate is

very important to get all the resonances in a given energy interval, even those having

a wave function localized at the asymptotic region of the PES; in such a case the

resonance wave function should be damped only in a very small interval near the

end of the R-range. The functional form of the CAP was chosen as the highest order

polynomial of Ref. 111. The η CAP-strength parameter covered a range of 10−2−10−9,
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divided into different (sometimes overlapping) intervals usually covering three orders

of magnitude. Within these intervals the η parameter was distributed according to

Eq. 3.9.

The GENIUSH computations utilized 15 and 100 DVR grid points along the r and

θ coordinates, respectively, and 100−250 grid points along R to test the convergence of

the computations of the resonance states. 300−500 GENIUSH eigenvectors were used

as basis for the CAP computations. Resonance energies are expected to be accurate

to better than 0.1 cm−1, while lifetimes are thought to be computed within 5-10% of

their exact values.

4.2.5 Stabilization computations

The eigenstates beyond the first dissociation threshold of the Ar·NO+ complex

have also been analyzed with a Hermitian variational technique, the stabilization

method.96;107;108;153;154 12 000 eigenstates were obtained in a series of 25 standard GE-

NIUSH computations to identify certain long-lived vibrational resonances of Ar·NO+.

We used this technique in its simplest form and observed the stabilization of eigenen-

ergies by employing histogram binning with a bin size of 0.001 cm−1. During the

stabilization computations the number of DVR basis functions on the R dissociation

coordinate was changed between 80 and 120, proportionally with the end of the coor-

dinate range which covered the interval between 30 and 50 bohr.

In order to have a direct comparison with the other two techniques used to identify

resonance states, the focus was placed on the 20 cm−1 window above D0. A stabiliza-

tion histogram was also generated in this interval from the computations described

above, with a bin size of 0.01 cm−1.
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Table 4.1: Comparison of the first and last 15 bound vibrational (J = 0) and rovibra-
tional (J = 1 and 2) energy levels, given in cm−1, of the Ar·NO+ complex computed
in full (3D vibrational and 6D rovibrational) and reduced-dimensional models (2D and
5D), where the r coordinate is held fixed at its equilibrium value, using the variational
GENIUSH approach and close-coupling scattering (CC) theory.

No. J = 0 No. J = 1 No. J = 2

GENIUSH CC GENIUSH CC GENIUSH CC
2D 3D 5D 6D 5D 6D

1 96.66 1278.24 1 0.20 0.20 0.20 1 0.59 0.59 0.59
2 78.24 78.53 78.54 2 2.48 2.48 2.48 2 2.86 2.87 2.86
3 95.94 96.80 96.81 3 2.48 2.48 2.48 3 2.88 2.88 2.88
4 151.29 152.29 152.25 4 78.43 78.72 78.73 4 9.72 9.72 9.71
5 158.86 160.12 160.14 5 80.84 81.14 81.14 5 9.72 9.72 9.71
6 178.59 179.63 179.62 6 80.85 81.14 81.15 6 78.81 79.10 79.11
7 213.03 214.69 214.62 7 96.13 96.99 97.00 7 81.22 81.51 81.52
8 222.09 223.14 223.09 8 98.31 99.17 99.17 8 81.24 81.53 81.54
9 233.30 234.65 234.64 9 98.32 99.17 99.18 9 88.46 88.75 88.75
10 254.37 255.54 255.52 10 151.48 152.47 152.44 10 88.46 88.75 88.75
11 270.19 271.66 271.63 11 154.02 155.03 154.99 11 96.52 97.38 97.38
12 283.98 285.47 285.37 12 154.03 155.04 155.00 12 98.69 99.55 99.55
13 288.82 290.01 289.95 13 159.05 160.30 160.33 13 98.71 99.56 99.57
14 302.37 303.81 303.77 14 161.39 162.62 162.65 14 105.24 106.08 106.08
15 321.79 323.10 323.07 15 161.40 162.63 162.65 15 105.24 106.08 106.08

186 876.99 879.63 879.47 536 880.92 883.74 883.53 845 881.93 884.55 884.40
187 878.01 880.36 880.20 537 881.45 884.28 884.08 846 882.21 884.56 884.41
188 878.49 880.96 880.80 538 881.83 884.44 884.19 847 882.26 884.85 884.70
189 879.54 882.12 881.96 539 881.84 884.75 884.60 848 882.33 884.86 884.71
190 879.58 882.47 882.31 540 882.05 884.76 884.61 849 882.33 885.09 884.93
191 879.83 882.76 882.60 541 882.21 885.22 885.11 850 882.64 885.09 884.93
192 880.88 883.69 883.49 542 882.53 885.47 885.37 851 882.99 885.27 885.19
193 881.41 884.24 884.05 543 882.96 885.74 885.78 852 883.20 885.55 885.44
194 881.97 884.39 884.13 544 883.23 885.97 885.90 853 883.21 885.79 885.83
195 882.19 885.20 885.08 545 883.24 886.01 885.95 854 883.33 886.09 886.03
196 882.49 885.44 885.35 546 883.40 886.09 886.08 855 883.34 886.16 886.05
197 882.94 885.91 886.14 547 883.73 886.13 886.42 856 883.43 886.19 886.43
198 883.39 886.29 886.78 548 884.06 886.40 857 883.76 886.43 886.66
199 883.72 886.57 549 884.11 886.66 858 884.11 886.48
200 884.08 886.84 550 884.11 886.90 859 884.16 886.78
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4.3 Bound rovibrational states of Ar·NO+

4.3.1 Computational results in full and reduced dimensions

Bound vibrational (J = 0) and rovibrational (J = 1 and 2) energy levels of the

Ar·NO+ complex have been determined by employing both the variational GENIUSH

and the Newmat scattering protocols. GENIUSH computations were performed in

reduced dimensions, i.e., using a one- or two-dimensional Hamiltonian, as well.

Comparison of selected bound-state energies, obtained in both 3D and 2D, is shown

in Table 4.1. The agreement between the bound-state energies of the two fundamen-

tally different approaches, GENIUSH and CC, is very good. For the lowest states, e.g.

up to 200 cm−1, only a few 0.01 cm−1 deviation is observed, which increases as the

energy approaches D0. Near dissociation the two methods yield very slightly different

results. It can also be seen from Table 4.1 that the energy levels become rather dense

as the energy approaches the dissociation limit.

The J = 1 and 2 rovibrational energies reveal that while the Ar·NO+ complex

is characterized by two large-amplitude, significantly mixed vibrational motions, the

complex rotates basically as a rigid rotor. This is due to the large masses of the nuclei,

resulting in rotational constants of Ae = 2.4 and Be ≈ Ce = 0.1 cm−1, about two

orders of magnitude smaller than the first vibrational excitation energy at 78.5 cm−1.

As to the reduced-dimensional models, 2D rovibrational energies obtained from

GENIUSH computations using the so-called rigid monomer approximation (RMA),

i.e., where the intramonomer distance r is frozen to its equilibrium value, are also

compared to their full-dimensional counterparts in Table 4.1. It is obvious that the 2D

results capture more than the essential physics of the nuclear dynamics of Ar·NO+,

the deviations between the 2D and 3D energies are between 1 and 3 cm−1, never

larger than 3 cm−1 up to 500 cm−1. Nearer to dissociation, elimination of the NO+

stretching motion from the dynamical computation seems to cause more significant

differences. Thus, as expected, the energies increase upon extension from a 2D to a 3D

treatment of the vibrations, which is the result of the coupling with the NO+ stretching
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fundamental, occurring at about 2340 cm−1, well above the first dissociation limit of

Ar·NO+ (see Table 4.2), neglected in the 2D model. In conclusion, the RMA model

works very well, i.e., the 2D results are almost of spectroscopic accuracy, defined as 1

cm−1.

Table 4.2: GENIUSH vibrational energies corresponding to the NO+ stretching motion
from 1D (R and θ are fixed to their equilibrium values) and 3D models, in cm−1. (No.
= 2036 refers to the 2036th eigenvalue.)

1D 3D
No. Value No. Value
2 2337.1 2036 2338.2
3 4641.6 5170 4643.4
4 6912.8 8410 6914.9
5 9156.5 11726 9158.5

1D computations have also been carried out where only the r coordinate is active

(the R and θ coordinates are held fixed at their equilibrium values), yielding the bound

states of the 1D problem of the NO+-stretching motion. Also, further 3D computations

(as part of applying the stabilization method to this system) were performed, providing

eigenvalues high above the D0 dissociation limit. Inspecting Table 4.2, one can notice,

that the 1D model can reproduce very accurately the 3D counterparts of the NO+

stretching modes, embedded in the continuum. Identification of these 3D states is

based on the analysis of their wave function plots, which are presented in Figure 4.1.

As it is seen in Figure 4.1, the first and second excited states of the NO+-stretching

motion feature localized and clearly-structured wave functions, in contrast to those of

the neighboring continuum states, showing chaotic structures.

The zero-point vibrational energy (ZPVE) of Ar·NO+ is 1278.2 cm−1, while it is

1181.1 cm−1 in the 1D NO+ model. This means (as expected) that most of the ZPVE

is in the diatomic fragment, while the other two, large-amplitude motions contribute

less than 100 cm−1 to the ZPVE of the Ar·NO+ complex. The ZPVE of the 2D RMA

model is 96.7 cm−1, showing the almost perfect 1D + 2D additivity of the 3D ZPVE.

Thus, the results of the 1D model prove once again the power of the RMA model for

such a weakly-bound complex, i.e, that large-amplitude intermonomer vibrations can
44



2035:  2337.2 cm-1 2036:  2338.2 cm-1 2037:  2338.9 cm-1

5169:  4642.4 cm-1 5170:  4643.4 cm-1 5171:  4644.5 cm-1

Figure 4.1: Plots of the full-dimensional eigenfunctions of the NO+ stretching funda-
mental and its first overtone (in the middle of the figure, r − θ cuts), as well as the
preceding and subsequent wave functions of the system (R − θ cuts). The two NO+

stretching states can be obtained as eigenstates stabilized at energies of 2338.2 and
4643.4 cm−1.

be almost adiabatically separated from the high-frequency intramonomer vibration.

4.3.2 Comparison with experiment

Vibrational progressions revealing bound-state energies of the Ar·NO+ complex

have been measured in the [0, 400] and [330, 720] cm−1 intervals by Takahashi134

and Bush et al.,141 respectively. Comparison of these energy levels with some of the

computed ones is presented in Table 4.3.

Quantum number assignments are only given in Table 4.3 for the experimental re-

sults, taken from the original references.134;141 Quantum numbers could be assigned to

the bound vibrational states via the node-counting technique I employed, however, the

states show considerable mixing of the intermonomer modes, i.e., the stretching R and

the bending θ coordinates. Assigning stretching (ns) and bending (nb) quantum num-

bers to the computed states is thus rather ambiguous in almost all cases. Furthermore,

the stretching and bending progressions “established” experimentally cannot be clearly

followed. Nevertheless, pairing of experimental and computed energy levels is based
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Table 4.3: Experimental (expt) vibrational energy levels of Ar·NO+ and their com-
puted counterparts, in cm−1, obtained with the GENIUSH (GEN) and the close cou-
pling scattering (CC) techniques in reduced (2D) and full (3D) dimensions, relative to
the ZPVE. ns and nb denote the experimentally determined stretching and bending
quantum numbers, respectively.134;141

No. 2D 3D Experiment
EGEN ECC EGEN Eexpt ns nb

1 0.0 0.0 0.0 0.0 0 0
2 78.1 78.5 78.5 79 ± 2 0 1
3 95.9 96.8 96.8 94 ± 2 1 0
4 151.3 152.3 152.3 155 ± 2 0 2
6 178.6 179.6 179.6 178 ± 2 2 0
9 233.3 234.6 234.7 230 ± 2 0 3
10 254.4 255.5 255.5 256 ± 2 3 0
16 327.5 328.8 328.9 328 ± 2 4 0
23 396.0 397.4 397.4 391 ± 2 5 0
29 439.6 441.0 441.1 440 ± 2 0 6
30 445.3 446.6 446.7 451 ± 2 6 0
38 488.8 490.3 490.4 484 ± 2 1 5
40 502.5 503.7 503.7 500 ± 2 0 7
41 504.1 505.5 505.6 509 ± 2 7 0
47 536.9 538.3 538.4 531 ± 2 6 1
49 544.6 546.1 546.2 541 ± 2 1 6
51 556.8 557.9 558.0 558 ± 2 0 8
58 585.8 587.2 587.3 583 ± 2 7 1
61 597.1 598.8 598.9 596 ± 2 1 7
64 610.0 611.4 611.5 609 ± 2 0 9
70 631.7 633.1 633.2 631 ± 2 8 1
78 660.3 661.9 661.9 656 ± 2 10 0
85 683.0 684.8 684.9 680 ± 2 9 1
92 705.9 707.3 707.5 700 ± 2 11 0
97 718.5 720.0 720.1 722 ± 2 10 1

mainly on the structure of the wave functions plotted along the two intermonomer co-

ordinates. They show, in most cases, a somewhat clearer excitation pattern regarding

the pure excitations along either the R or the θ coordinate, that is when either of the

intermonomer stretching or bending quantum numbers have zero value.
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Thus, while a qualitative interpretation of the measured progressions appears to

be challenging, the computed vibrational energies do support the observed transitions

in a quantitative way, see Table 4.3.

4.4 Resonance states of the Ar·NO+ complex

4.4.1 Quasi-bound states high above the first dissociation

limit

In this Section a text-book example of Feshbach resonances, introduced in Section

2.3.1, is presented. As discussed in Section 2.3.1, Feshbach resonances occur when the

bound states of a system, characterized by an unperturbed Hamiltonian operator, are

embedded in the continuum part of the spectrum of this operator, and due to coupling

with this continuum, i.e., a “perturbation”, they become metastable. Let us present,

how this is realized in the case of a weakly-bound van der Waals complex.
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Figure 4.2: Overview of the stabilization-method histogram in the 0–8000 cm−1 energy
interval based on 25 individual GENIUSH computations.

Stabilization computations for Ar·NO+ reveal an interesting repetitive pattern well

above the first dissociation threshold of the complex. The overview of the stabilization
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histogram, based on 25 individual GENIUSH computations and binned using a bin

size of 0.001 cm−1, covering the [0 − 8000] cm−1 interval is shown in Figure 4.2. Green

color denotes bound states, while red refers to resonance states. The green stack,

consisting of bound states, has a well-defined upper limit, corresponding to D0. The

three further stacks between 2300 − 3200, 4600 − 5500, and 6900 − 7800 cm−1 exhibit

pronounced similarity with the stack corresponding to the bound states. They start at

the first, second, and third excited NO+ stretching states and the width of the stacks

is approximately D0. As we have seen above, the excited NO+ stretching modes could

be precisely identified by their localized and informative wave functions among the

continuum states in 3D GENIUSH computations (see Figure 4.1 and Table 4.2).

Thus, the reason for these states emerging clearly above the first dissociation limit,

with maximal count numbers in the stabilization histogram meaning that in all indi-

vidual computations the corresponding energy falls into a 0.001 cm−1-wide bin, is that

they resemble very much to the bound states of the complex shifted by the excitation

energies of the NO+-stretching mode. This is also supported by their localized nature

in the interaction region of the potential.

Consequently, one is invited to notice, that these states are the bound states of

the unperturbed Hamiltonian describing the stretching motion of the NO+ diatomic

molecule, and the vibrations along the R and θ coordinates. Due to the perturbation

terms in the full Hamiltonian, i.e., the intermonomer-interaction and the kinetic energy

terms corresponding to the relative motion of the monomers, they become coupled to

the surrounding continuum, and so they become metastable. In fact, the discrete states

with NO+ in v = 1, where v is the vibrational quantum number of the NO+ diatom,

and the intermonomer modes in a specific bound vibrational state are coupled to the

continuum states of the intermonomer modes with NO+ being in v = 0. In other

words, the coupling to the intermonomer vibrations makes possible the decaying of

these states in time, due to the opening of a decaying channel at the first dissociation

energy of the Ar·NO+ complex, which is much lower than that of NO+. This new

channel allows for the excess energy stored in the NO+-vibration to “leak” through

this coupling, thus forcing the NO+-stretching states (and the states corresponding to

intermonomer excitations superimposed on them) to have finite lifetimes.
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Figure 4.3: Stabilization-method histograms covering 400 cm−1 above the NO+-
stretching fundamental (top panel) and its first (middle panel) and second (bottom
panel) overtones, obtained from 25 GENIUSH computations. All three panels show
19 long-lived resonances.
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Since, as seen above, the coupling is very weak between the small-amplitude NO+-

stretching and the large-amplitude intermonomer motions, these bound states are only

slightly “perturbed”, and as such turn into very long-lived resonance states.

If we zoom into the stacks located above the dissociation threshold, see Figure 4.3,

a very similar pattern of long-lived resonance states appear at the beginning of each

stack, starting with the first, second and third excited NO+-stretching state. The

wave functions of the states on top of the NO+-excited levels feature exactly the

same intermonomer stretching and bending excitation patterns as the corresponding

bound states, in line with the intuitive assumption described above. As an illustration,

Figure 4.3 shows the first 19 resonances superimposed on the excited NO+ levels, all

covering a 400 cm−1 interval.

In summary, the stabilization method has been very successful in identifying the

characteristic energy pattern of long-lived Feshbach resonance states of the Ar·NO+

complex. Such a clear pattern could be formed because of the adiabatic separation of

the intramonomer motion from the other internal degrees of freedom of the system.

It is emphasized that in the case of such a weakly-bound complex, the stabilization

method can yield accurate resonance energy levels high above the first dissociation

threshold.

4.4.2 Low-lying vibrational resonances

In order to compare the GENIUSH-CAP results to those of scattering resonance

computations, a suitable energy range, i.e., the [D0, D0 + 20] cm−1 window, has been

chosen. Since the close coupling (CC) cross sections proved to be very complicated

due to the very rich and overlapping resonance structure of the Ar·NO+ complex at

higher energies, and also because of the subtility of the GENIUSH-CAP trajectories

in those regions, the energy interval just above the first dissociation limit seemed to

be a convenient choice for comparison.

For an adequate comparison one has to find the common language between the two

different methods. It should be kept in mind that the GENIUSH-CAP computations

provide energies for a given value of J , which is the total angular momentum quantum
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Figure 4.4: J = 0 component of the j = 0, 1, 2 → j′ = 0, 1, 2 cross sections as a
function of the total energy on a logarithmic scale. Blue vertical lines denote energies
at which resonances are found in GENIUSH-CAP computations. The red vertical lines
emphasize the large peaks of the stabilization method histogram of Fig. 4.6. The zero
of energy is taken for Ar far from NO+(v = 0, j = 0).

number, however, these computations include all the possible values of j and l as

|j − l| ≤ J ≤ j + l, where j is the rotational quantum number of the NO+ unit, while

l characterizes the relative rotation of the two monomers in the complex. In contrast,

in CC computations the state-to-state cross sections, characterized by initial and final
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states corresponding to given j and l values, are obtained for all the transitions between

the populated ro-vibrational states of NO+, including several J values. Thus, the J = 0

components of these cross sections should be compared to GENUSH-CAP results, as

it is illustrated for the low-lying resonances of the Ar·NO+ complex in Figure 4.4.

In the J = 0 case, if one chooses a given initial rotational state of NO+, j, one

also fixes the value of l, which thus must equal j. Thus, the resonances appearing on

the J = 0 component of the inelastic cross sections starting from the rotational state

j = 0 of NO+ are associated with l = 0 and are then Feshbach resonances, in a sense

that in such cases no rotational excitation occurs either in the NO+ unit or in relative

orientation of the monomers.

With the above considerations in mind, Figure 4.4 shows j = 0, 1, 2 → j′ = 0, 1, 2

cross sections, since the j = 1 and j = 2 rotational states open in the [D0 − 20] cm−1

energy interval. In Figure 4.4 the resonance positions obtained from GENIUSH-CAP

are denoted by vertical blue and red lines, while the energy positions and widths of

the peaks in the state-to-state cross sections drawn as a function of energy define

roughly the CC resonance energies and widths. As it can be seen from Figure 4.4 all

significant CC peaks can be paired with GENIUSH-CAP resonance energies within a

few 0.1 cm−1. With GENIUSH-CAP the resonance states at 3.9 and 11.6 cm−1 have

been successfully identified to be related to the opening of the j = 1 and 2 channels,

which occur at 3.9 and 11.9 cm−1 in the cross sections. Due to the logarithmic scale,

at very low energies even extremely small shifts can be observed. If one fitted, e.g., the

Breit-Wigner formula to a single cross section curve, the obtained resonance properties

would slightly differ from the positions and width of the different curves shown in

Figure 4.4. However, because of the complicated resonance structure of Ar·NO+ this

task has not been carried out. Taking into account the complex dynamical behavior

of the system studied and the fundamental differences of the two techniques, it is the

expected quality of the agreement between the results of the two approaches. To the

best of my knowledge, such a comparison, apart from this work,22 has not yet been

published in the literature.

To further complement the comparison between the GENIUSH-CAP and the CC

resonance computations, lifetimes of resonance states obtained from the two ap-
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proaches were also paired, as presented in Figure 4.5. As can be seen in Figure 4.5, the

positions of the longer-lived resonances are in good agreement. GENIUSH-CAP reso-

nance energies and lifetimes are listed in Table 4.4, where the longest-lived resonances

are boldfaced.

Table 4.4: Resonance energies (E, in cm−1) and lifetimes (in ns) obtained from
GENIUSH-CAP computations. These resonance energies are denoted with blue and
red lines in Fig. 4.4.

E Lifetime E Lifetime E Lifetime
0.5 0.43 5.1 0.51 13.3 0.02
0.7 0.41 7.0 0.02 14.0 0.02
1.0 11.19 7.6 0.09 14.4 0.01
1.3 0.03 8.2 0.01 14.7 0.01
1.4 0.03 8.7 0.55 15.0 0.01
1.7 2.35 10.2 0.55 15.7 0.05
2.4 0.02 11.1 0.23 15.9 0.04
2.6 33.61 11.6 0.30 16.5 0.25
3.2 0.05 11.7 0.08 17.6 0.31
4.3 0.08 12.8 0.04 18.8 0.37
4.7 0.27 13.1 0.08 19.5 0.09

To explore more thoroughly the [D0, D0 + 20] cm−1 energy window chosen to in-

vestigate low-lying resonance states of Ar·NO+, we also inspected the stabilization

histogram of this region. Histograms were constructed in this energy interval by em-

ploying a 0.01 cm−1 bin size, shown in Figure 4.6. A “higher resolution” of 0.001

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1  2  3  4  5  6  7  8  9  10

 /
 n

s

GENIUSH-CAP

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  12  14  16  18  20

 /
 n

s

E 
-1

GENIUSH-CAP

/ cmE 
-1

/ cm

Figure 4.5: Comparison between the J = 0 resonance energies and lifetimes deter-
mined with the GENIUSH-CAP method and those obtained from the close coupling
computations. The zero of energy is taken for Ar far from NO+(v = 0, j = 0).
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cm−1 bin size did not provide any valuable insights. In Figure 4.6 one can spot three

significant peaks, which correspond to long-lived resonances in this region. These res-

onance states have been confirmed by both the CC ad GENIUSH-CAP computations,

as seen in Figure 4.5. These are the three longest-lived states in this region, according

to GENIUSH-CAP, see data in Table 4.4. The corresponding resonance energies are

highlighted as red lines in Figure 4.4.
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Figure 4.6: Stabilization-method histogram, bin size of 0.01 cm−1 , of the energy
range 20 cm−1 above the first dissociation limit, D0. Eigenvalues are obtained from
25 GENIUSH computations.

4.5 Concluding remarks

Studying the internal dynamics of the Ar·NO+ van der Waals complex has revealed

several interesting features of this system. Ar·NO+ was chosen to compare scatter-

ing and variational techniques, two fundamentally different approaches used to obtain

stationary rovibrational states of a system. Comparison of the bound energy levels,

computed with the two techniques, showed excellent agreement. Reduced-dimensional

computations revealed the almost perfect separation of the large-amplitude intermolec-

ular vibrations from the small-amplitude stretching vibration of NO+. The agreement

between the computed bound vibrational energies with the limited experimental in-

formation available was also good.
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Then, I investigated the resonance structure of Ar·NO+ in detail. First, with

the Hermitian stabilization method, which revealed an interesting pattern of energy

levels high above the first dissociation threshold of the complex. These states have

been assigned as Feshbach resonances, i.e., originally bound states embedded in the

continuum. Such a clear pattern in the stabilization histogram further proved the

adiabatic separation of the intra- and intermonomer vibrations.

The low-lying vibrational resonances of the Ar·NO+ complex have been studied

in a variety of ways: with the close coupling scattering technique and with the varia-

tional GENIUSH-CAP and stabilization methods. All three complementary methods

provided results in good agreement. Long-lived resonance states have been identified

with all three methods, and several shorter-lived ones have also been found with the

scattering and the variational GENIUSH-CAP techniques.
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Chapter 5

The resonance-state structure of

H2He+

5.1 The H2He+ molecule

Our choice of the H2He+ system was inspired by its astrophysical importance and

the widespread interest of such weakly-bound triatomic molecules. H and He are

the most abundant elements of the universe, and as such their complexes of various

stoichiometry are of wide interest in studying chemical processes that may occur in

space.155–157 H2He+ is also known to be an important collisional complex during the

reactive scattering processes of H+
2 + He, H2 + He+ and HHe+ + H. Being a stable

molecule in the primordial gas and in the interstellar medium,158–160 even more stable

than HeH+,161 means that H2He+ is a potential precursor in the formation of H, H+,

He, He+, H+
2 and HeH+.161

Light-induced dynamics of H2He+, also of great relevance in astrochemistry, have

recently been investigated in detail,29;30 and the significance of the resonance states in

the deexcitation processes has been revealed.29 Therefore, detailed knowledge of the

resonance states of H2He+ is of fundamental importance. Such quasi-bound states also

play an important role in the barrierless reaction H + HeH+ → H+
2 + He.162;163

Compared to the Ar·NO+ complex studied in the previous chapter, one can also be
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curious if a more “quantum-like” system, i.e., consisting of much lighter atoms such as

H2He+, features a similar, almost adiabatic decoupling of the intra- and intermonomer

degrees of freedom.

5.2 Computational details

5.2.1 The potential energy surface

The nuclear motions of the H2He+ complex can be well represented by the orthog-

onal Jacobi coordinates, where r denotes the distance between the two H atoms, R

refers to the distance between the center of mass of the H atoms and the He atom,

and θ is the included angle of the two vectors. For the nuclear motion computations

on H2He+ the PES of Ref. 164 was employed. This PES has dissociation thresholds of

De = 2733.66 cm−1 and D0 = 1775.32 cm−1, and it supports 16 vibrational states be-

low D0. The equilibrium structure of the H2He+ complex is linear, with req = 2.07792

bohr and Req = 2.96596 bohr.

5.2.2 Details of the GENIUSH-CAP computations

I have found and analyzed several resonance states of the H2He+ system employing

the GENIUSH-CAP program. Prior to the GENIUSH-CAP computations, GENIUSH

bound states had to be computed. In the GENIUSH vibrational bound-state computa-

tions 40 and 200 scaled Laguerre-DVR points were used along the r and R coordinates

in the ranges of [1.0, 5.0] and [0.5, 40.0] bohr, respectively. On the angular coordinate

40 unscaled Legendre-DVR points were employed in the interval of (0.0, 180.0)◦. The

convergence of the bound-state energies, presented in Table 5.2, see below, is better

than 0.01 cm−1 with respect to the number of basis functions being increased by 20

% on each coordinate. During the nuclear-motion computations the following atomic

masses were used: mH = 1.00727647 u and mHe = 4.00234755 u.

For the GENIUSH-CAP computations 400 vibrational GENIUSH eigenvectors were

used as a basis. During these computations the interval of R, where the CAP is
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switched on, i.e., the CAP-active interval, was taken to be either [10,40], [20,40] or

[30,40] bohr. Further GENIUSH-CAP computations were carried out using the GE-

NIUSH eigenvectors obtained during the stabilization method calculations, see Section

5.2.4, with the maximum R value of 50 bohr. In this case, the CAP-active interval was

changed between 10 and 50 bohr, using the same step size of 10 bohr, and 1500 GE-

NIUSH eigenvectors were used as basis for CAP computations. The η CAP-strength

parameter was varied through many orders of magnitude, i.e. from 10−9 − 10−2

. The results presented were obtained utilizing the highest order polynomial of

Ref. 111 as the functional form of the CAP. The resonance eigenvalues, both their

real and imaginary parts, are usually converged within a few 0.1 cm−1; however, this

convergence strongly depends on the given resonance.

5.2.3 D2FOPI-CCS computations

The D2FOPI-CCS5 technique employs the complex coordinate scaling method

linked to the D2FOPI triatomic bound-state-computing program.72 As being neces-

sary for D2FOPI-CCS computations, bound vibrational states of the H2He+ system

were also computed with the D2FOPI code. For these computations 40 potential-

optimized (PO) spherical-DVR basis functions72 along the r coordinate, 180 PO

spherical-DVR basis functions along the R coordinate, and 40 Legendre functions along

the θ coordinate were employed. The coordinate ranges used in the computations are

(0.0, 5.0) bohr for r, (0.0, 40.0) bohr for R, and (0.0, 180.0)◦ for θ. The bound states

obtained with GENIUSH and with D2FOPI are the same within numerical accuracy.

In the D2FOPI-CCS computations, resonance eigenstates were obtained by diag-

onalizing the complex-coordinate-scaled rovibrational Hamiltonian using 40 different

values for the scaling parameter, which changed from 0 to 0.8 with a step size of 0.02.

To find resonance states, cusps were identified in the resulting complex eigenvalue

trajectories. Details of this approach can be found in Ref. 5. For constructing the

matrix representation of the CCS Hamiltonian, 500 vibrational D2FOPI eigenvectors

were used. The convergence of D2FOPI-CCS resonance eigenvalues is between 0.01

cm−1 and 1 cm−1, depending on the resonance state. D2FOPI and D2FOPI-CCS
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computations were carried out by Dr. Tamás Szidarovszky.

5.2.4 Stabilization computations

In order to further study the resonance states of the H2He+ molecule, two sets of

stabilization computations were performed with GENIUSH. In the first set, the range

of the R coordinate, [0.5, Rmax] bohr, was changed in the interval of Rmax ∈ [32.0, 38.0]

bohr, applying a step size of 0.5 bohr and a proportional change in the number of

basis functions between 146 and 174 along R; thus, in this first set 13 individual

computations were performed determining 1500 eigenvalues. All other parameters

were the same as in the other GENIUSH bound-state computations, see Section 5.2.2.

In the second set of stabilization computations the R interval was enlarged and

the Rmax ∈ [49.0, 51.0] bohr range was chosen with a step size of 0.1 bohr and 1 basis

function starting with 190 basis functions along R. This way 21 computations were

performed, and 2000 eigenvalues, covering the same energy range as in the previous

set, were determined.

The results of these computations were depicted on stabilization histograms, which

were generated using a bin size of 0.05 cm−1 for both of the above sets. In these

histograms outstanding peaks refer to converged eigenvalues above dissociation, and

therefore to resonance energies.96;107

5.3 Comparison of non-Hermitian techniques

Since the complex coordinate scaling method does not involve approximations

(apart from utilizing a finite basis) regarding the resonance energy,1 it is a perfect

test to compare its results to those of the CAP technique. Thus, I have carried out

this comparison between resonance energies and lifetimes of the H2He+ system with

the corresponding results provided by the D2FOPI-CCS program.

Resonance eigenvalues, both the real and imaginary parts, obtained from the two

different methods show remarkably good agreement, as it is transparent from Table 5.1.
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Table 5.1: Long-lived GENIUSH-CAP resonance energies, both real (Re(Eres)) and
imaginary (Im(Eres)) parts (cm−1), and lifetimes (ps) paired with those obtained from
D2FOPI-CCS computations up to 3000 cm−1.

GENIUSH-CAP D2FOPI-CCS
Re(Eres) Im(Eres) lifetime Re(Eres) Im(Eres) lifetime
1775.8 −0.05 311.5 1775.9 > −0.005a > 3335.6
1776.7 −0.20 82.6 1777.0 −0.13 128.3
1778.3 −0.41 40.7 1779.8 −0.43 38.8
1809.0 −0.00 112357.9 1809.0 > −0.0001a > 166781.7
1822.6 −0.06 278.0 1822.6 −0.06 273.4
1832.0 −0.00 26685.1 1832.0 >0a

1834.2 −0.07 252.3 1834.2 > −0.04a > 417.0
1835.2 −0.21 78.5 1835.5 −0.13 128.3
1838.6 −0.40 41.7 1838.1 −0.40 41.7
1950.4 −0.08 198.1 1950.7 > −0.02a > 833.9
1951.4 −0.22 76.2 1951.8 −0.23 72.5
1954.7 −0.61 27.5 1954.3 −0.72 23.2
2123.7 −0.12 140.5 2123.6 −0.13 128.3
2124.8 −0.25 65.7 2125.6 −0.22 77.6
2128.1 −0.62 26.7 2127.8 −0.55 30.3
2352.5 −0.16 104.2 2352.0 > −0.22a > 75.8
2353.9 −0.31 53.8 2354.8 −0.38 43.9
2491.9 −0.91 18.3 2491.9 −1.11 15.0
2602.8 −0.72 23.2 2602.9 −0.87 19.3
2635.1 −0.21 79.4 2635.1 −0.36 47.0
2636.7 −0.38 43.9 2638.0 −0.45 37.1
2642.4 −0.54 30.9 2642.2 −0.58 28.8
2969.6 −0.27 61.8 2969.5 > −0.50a > 33.4
2973.3 −0.66 25.2 2972.9 −0.50 33.4
2978.3 −0.56 29.8 2978.3 −0.80 20.8
a To find the position of the resonance eigenvalue more exactly was not feasible.

Table 5.1 lists all the long-lived resonance eigenvalues, i.e. those having an imaginary

part greater than −1 cm−1, of H2He+ in the energy interval [D0, 3000] cm−1. The two

methods usually yield resonance energies within a few 0.1 cm−1, and even the obtained

lifetime values, which are usually very difficult to converge, are in the same order of

magnitude.

60



Figure 5.1: GENIUSH-CAP eigenvalue trajectories of two selected resonance states of
the H2He+ system, corresponding to the wave function plots of Figure 5.2. Blue and
pink triangles refer to 200 and 220 basis functions along the R dissociation coordinate
in the GENIUSH bound-state computations, respectively.

Overall, the excellent agreement of the GENIUSH-CAP and D2FOPI-CCS results

prove the correctness of the implementation of the CAP technique within GENIUSH.

5.4 Characterizing resonance states

Figure 5.1 presents two selected GENIUSH-CAP eigenvalue trajectories, with dif-

ferent colors referring to different basis set sizes, 200 and 220 DVR points, used along

the R dissociation coordinate in the GENIUSH bound-state computations. The left

panel of Figure 5.1 reveals that the cusp in the CAP eigenvalue trajectory covers a very

narrow energy range; thus, both the lifetime and the energy of this resonance state can

be determined very precisely. In contrast, the right panel of Figure 5.1 shows a cusp

covering a broader energy range, that is a few 0.1 cm−1, which allows for a somewhat

lower precision. This behavior is probably closely related to the localized or delocalized

nature of the resonance states, as discussed below.

A powerful analysis tool I have developed and linked to GENIUSH-CAP is the au-

tomatic visualization of the resonance wave functions, obtained by plotting the square

of the absolute values of the complex eigenvectors of the CAP-modified Hamiltonian,

corresponding to the cusp energies.

Figure 5.2 shows the 2D cuts of the wave functions of the two resonance states

presented in Figure 5.1. In each case the third coordinate is held fixed at its equilibrium
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Figure 5.2: 2D GENIUSH-CAP wave function plots (the third coordinate is held fixed
at its equilibrium value) of two resonance states of H2He+ corresponding to the res-
onance energies of Figure 5.1. In both cases the CAP is switched on between 35-40
bohr along the R dissociation coordinate. r and R coordinates are given in bohr, θ is
given in radian.

value. The left panels of Figure 5.2 reveal that the wave function of the resonance state

at the energy of 1822.6 cm−1 is localized in the potential well along the R dissociation

coordinate. This is supported by the fact that this resonance could be identified

even when the CAP was switched on, and thereby the resonance wave function was

damped, in the 20-40 bohr range along R. In contrast, the dominant part of the wave

function corresponding to the resonance state at 1942.2 cm−1 is extended along the R-

coordinate until it is damped by the CAP, at 35 bohr. Due to this delocalized nature,
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the L2 expansion of this resonance state is less effective than that of the previous one.

This is probably the reason why its trajectory features a less “sharp” cusp. Also, the

dominance of the wave function in the asymptotic region indicates that this resonance

is a “less bound” state, which is also reflected by its shorter lifetime when compared to

the resonance state at 1822.6 cm−1. Due to its shorter lifetime (having an imaginary

part − 4.3 cm−1, and therefore a lifetime of 4 ps) this state is not listed in Table 5.1.

Inspecting further the wave functions of Figure 5.2 reveals that neither resonance

states is excited in the HH-stretching motion (they show no nodes along the r coor-

dinate); however, both feature excitations in the intermolecular bending motion. The

R intermolecular stretching mode is only doubly excited in the interaction region for

the state at 1822.6 cm−1, but, not surprisingly, it is highly excited for the resonance

with the energy of 1942.2 cm−1.

5.5 Patterns in the resonance energy-level struc-

ture of H2He+

5.5.1 Bound states as resonances

In Table 5.1 two extremely long-lived states can be spotted at the resonance energies

of 1809.0 and 1832.0 cm−1. These states have lifetimes several orders of magnitude

longer than the other resonances in the region. The stabilization histograms, presented

in Figure 5.4 and analyzed later in detail, also show two peaks with large count numbers

at these energies. Inspecting the wave functions of the two long-lived states, shown

in the upper two panels of Figure 5.3, obtained from a GENIUSH computation with

Rmax = 50 bohr, reveals that they are antisymmetric in the θ coordinate. Therefore

these states correspond to the B2 irreducible representation of the C2v(M) molecular

symmetry group. Such symmetry classifications reflect the behavior of the spatial part

of the wave functions with respect to the exchange of the two identical atoms. For

example, wave functions of B2 symmetry change sign upon the exchange of the two H

atoms, while wave functions of A1 symmetry do not.
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Figure 5.3: 2D GENIUSH wave function plots of four long-lived resonance states of
the H2He+ molecular ion at the energies of 1809.0, 1832.0, 1775.5, and 1776.0 cm−1,
obtained from the stabilization computation utilizing Rmax = 50 bohr. The wave
functions of the upper two panels transform according to B2 symmetry, as reflected
by the antisymmetry of their wave functions along the θ Jacobi coordinate. The wave
functions shown in the lower two panels transform according to A1 symmetry. The
third coordinate is held fixed at its equilibrium value in all cuts. r and R coordinates
are given in bohr, θ is given in radian.
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It is known that molecular states can only dissociate through dissociation channels

where the product states reflect the symmetry of the wave function in the interaction

region. Thus, symmetry properties only allow the resonance states at 1809.0 and

1832.0 cm−1 to dissociate into the second lowest dissociation channel, whereby the H+
2

product is in its first excited j = 1 rotational state, where j is the rotational quantum

number of the H+
2 diatom. The rotational wave function of the j = 1 state, and

all the wave functions of H+
2 corresponding rotational states excited by odd quanta,

are antisymmetric with respect to the exchange of the two H atoms. The j = 1

dissociation channel is estimated, within the rigid rotor approximation, to be around

60 cm−1 higher than the first dissociation limit corresponding to the j = 0 state of

H+
2 .165 Thus, the resonance sates with energies of 1809.0 and 1832.0 cm−1 are actually

bound states, located below the second lowest dissociation channel which is the first

available dissocation channel for states with B2 symmetry. This assertion is supported

by the extremely long lifetimes of these states. (The 60 cm−1 difference between the

opening of the two lowest dissociation channels of H2He+ can also be observed in

Figure 5.5 of Section 5.5.3.)

In the stabilization method histograms of Figure 5.4 two further significant peaks,

with large count numbers, appear at energies 1775.5 and 1776.0 cm−1. These states

have much shorter lifetimes than the two extremely long-lived, actually bound, states

at 1809.0 and 1832.0 cm−1. From the wave functions of the two states at about 1776

cm−1, shown in the two lower panels of Figure 5.3, it is seen that they correspond to A1

symmetry, i.e., their wave functions are symmetric in the θ coordinate. Thus, the states

at 1775.5 and 1776.0 cm−1 are indeed resonances, since they are located just above the

first dissociation channel, opening at 1775.32 cm−1 and corresponding to A1 symmetry,

where the H+
2 product is in its j = 0 rotational state. The large count number of the

states at 1775.5 and 1776.0 cm−1 in the stabilization histograms can be explained by

the fact that their wave functions are mainly localized in the interaction region of

the potential. Nevertheless, the wave functions of these two states in the asymptotic

region can be described by large-wavelength continuum waves. The large wavelength

reflects the low relative kinetic energy of the products resulting from the fact that

these resonances lie just above the first dissociation threshold. This phenomenon will

be further discussed in detail in Section 5.5.3.
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Table 5.2: Bound vibrational energy levels (cm−1) of the H2He+ complex obtained with
GENIUSH in 3D and 2D (the r coordinate is fixed at its equilibrium value), relative
to the zero-point vibrational energies 2107.00 and 1113.32 cm−1, respectively.

No. 3D 2D No. 3D 2D
1 2107.00 1113.32 9 1502.70 1428.42
2 0.00 0.00 10 1546.34 1472.70
3 733.75 692.81 11 1589.90 1505.67
4 733.77 692.84 12 1620.93 1550.93
5 1150.13 1143.90 13 1682.05 1597.39
6 1151.83 1146.63 14 1731.67 1647.39
7 1263.65 1201.85 15 1738.34 1649.71
8 1264.25 1202.44 16 1771.83 1684.44

As can also be deduced from the first row of Figure 5.3, the bound state, of B2

symmetry, at 1809.0 cm−1 corresponds to the first excited state of the HH-stretching

motion, i.e., a node appears in the r coordinate. However, higher excitations of this

motion cannot be seen as clearly in the stabilization histograms as in the case of the

NO+-stretching motion of the Ar·NO+ complex, detailed in Section 4.4.1. The absence

of a clear pattern is probably due to the considerable coupling between the intra- and

intermonomer degrees of freedom in the case of the H2He+ complex, as reveled by

2-dimensional GENIUSH bound-state computations. In these computations the r co-

ordinate is fixed at its equilibrium value. The results of 2D bound vibrational energy

computations are listed in Table 5.2. From Table 5.2 it is obvious that in the case of

H2He+ the energy levels obtained from the 2D model differ considerably from their

3D counterparts, this difference reaches 90 cm−1 near dissociation. Quasi-degeneracy

of the energy levels can also be observed, originating from the double-well PES, on

which two equivalent minima reflect the linear structure of H2He+ with the He atom

lying either at one or at the other edge of the H+
2 molecular ion. The coupling between

the HH-stretching mode and the intermonomer vibrations, mainly the intermonomer

stretching motion, makes possible the efficient “leakage” of the energy from the intra-

monomer vibration to the R coordinate, through which dissociation proceeds.
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5.5.2 Relation between the CAP and the stabilization meth-

ods

Stabilization method histograms of the H2He+ system covering the [0−5000] cm−1

energy range are presented in Figure 5.4. The upper histogram is based on 13 individual

GENIUSH computations, with the maximum value of the dissociation coordinate,

Rmax, distributed evenly between 32 and 38 bohr. The histogram shown in the lower

part of Figure 5.4 is based on a much larger R interval, where Rmax ∈ [49, 51], and

is based on 25 computations. Both histograms are generated using a bin size of 0.05

bohr. In contrast to the very clear patterns of the stabilization histogram of Ar·NO+,

where a 0.001 cm−1 bin size was sufficient to obtain peaks of long-lived resonances

with maximal count numbers, the stabilization histograms of H2He+ require the use of

a considerably larger bin size. This is due to the stronger coupling between the intra-

and intermonomer motions in the case of H2He+, resulting in the delocalization of the

wave functions along R, leading to somewhat less converged resonance eigenvalues.

At first glance one can notice that in the upper panel of Figure 5.4, where a shorter

R interval is used, only a few significant peaks appear above the dissociation threshold.

In contrast, when extending the range along the R coordinate, numerous further peaks

emerge. The peaks of the stabilization histogram based on the extended R interval

are compared to CAP results in Table 5.3. The correlation between the CAP-active

interval, i.e., the range of the R coordinate where the CAP is switched on, of the

corresponding GENIUSH-CAP computation and the appearance of a given resonance

in the stabilization histogram is also analyzed in Table 5.3.

The relation between the stabilization method and the complex absorbing potential

technique is interesting: if one approaches the limit of η = 0 and narrows the CAP

active interval, one approaches the case of a standard bound-state computation. As

it is known, resonance eigenvalues can be obtained as converged stable eigenvalues

from stabilization computations, and also as cusps in CAP-trajectories on the complex

plane. However, as mentioned in Section 2.4.3, in calculations with a CAP (at least)

two errors are present: one is due to the damping of the resonance wave function,

which also changes the resonance eigenvalues, while the other is due to the use of a
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Figure 5.4: Stabilization histogram of the H2He+ complex using the [32.0,38.0] (13 GE-
NIUSH computations) and the [49.0,51.0] (21 GENIUSH computations) bohr intervals
for the Rmax values (see the text for details). A bin size of 0.05 cm−1 is applied.

finite basis. Thus, if one compares the stabilization method results, whose convergence

might also vary, with those of the CAP method, one can obtain the same resonance

eigenvalues only within a margin of error, as it is seen in Table 5.3.

Table 5.3 and Figure 5.4 reveal a clear correspondence between the length of the

CAP-active interval necessary for finding a given resonance and the peaks appearing
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Table 5.3: Stable eigenvalues (cm−1) from GENIUSH stabilization computations with
extended R-range, Rmax ∈ [49, 51], and their count numbers (corresponding to a
bin size of 0.05 cm−1) paired with resonance energies (cm−1) and lifetimes (ps), ob-
tained from GENIUSH-CAP computations based on a bound-state computation with
Rmax = 50 bohr. The last four columns show the CAP-active R intervals, whereby
the given resonance states could be found with the CAP technique. Only resonances
that feature peaks in the stabilization histograms with a count number greater than
or equal to 10 in the [D0, 5000] cm−1 energy interval are listed.

Stabilization method CAP
Estab Count Ea

CAP lifetime 10-50 20-50 30-50 40-50
1775.50 21 1775.75 310 - X X X
1776.00 16 1776.72 80 - - - X
1809.00 21 1809.00a 112360a

1832.00 22 1831.98 26690 - X X -
1833.80 21 1834.15 250 - X X X
1834.40 16 1835.15 80 - - X X
1949.95 12 1950.41 200 - - X X
2123.05 17 2123.65 140 - - X X
2123.95 11 2124.81 70 - - - X
2351.75 16 2352.48 100 - - X X
2352.80 10 2353.85 50 - - - X
2634.25 13 2635.14 80 - - - X
2968.45 12 2969.55 60 - - - X
3352.00 10 3353.30 50 - - - X
3352.05 10 3355.25 30 - - - X
3782.25 10 3783.73 40 - - - X
3967.90 21 3968.15 330 - X X X
3968.40 16 3969.09 90 - - - X
4023.15 21 4023.48 280 - X X X
4133.25 22 4133.67 210 - - X X
4133.95 15 4134.65 90 - - X X
4297.25 19 4297.84 140 - - X X
4298.15 10 4299.02 70 - - - X
4513.90 11 4514.67 100 - - - X
4513.95 10 4516.03 50 - - - X
4515.00 10 4516.33 830 - - - X
4781.55 18 4782.47 80 - - - X

a This resonance state could only be found with Rmax = 30 bohr and with a 10-30
bohr CAP-active interval.
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in the stabilization histograms: peaks emerging only in the stabilization histogram

based on the extended R-range can be found only at smaller CAP-active intervals, e.g.,

[30−50] or [40−50] bohr, when their wave functions are only damped at the edge of the

R interval. In contrast, peaks present in the stabilization histogram based on a smaller

R range can be identified even when the CAP is switched on at 20 bohr. GENIUSH-

CAP resonance wave functions corresponding to peaks of the stabilization histogram

will be presented and analyzed in Section 5.5.3. As can also be seen from Table 5.3,

the significant peaks of the stabilization histograms refer to resonances having very

long lifetimes; however, not as long as the lifetimes of the (actually bound) states of

B2 symmetry at 1809.0 and 1832.0 cm−1. It can also be observed that peaks having

larger count numbers in the stabilization histograms usually correspond to longer-lived

resonance states.

5.5.3 Opening of new dissociation channels

By inspecting the complex eigenvalue trajectories of the complex scaled Hamilto-

nian, computed with the D2FOPI-CCS program and presented graphically in Fig-

ure 5.5, one can immediately notice a clear pattern. In the vicinity of specific energy

values on the real axis, an increasing density of points can be observed. Also, rotated

bands of continuum states appear at these specific energies. These continuum states,

corresponding to new dissociation channels, result in branch cuts of the scattering ma-

trix and are rotated by 2ϑ due to complex scaling, where ϑ is the scaling parameter. As

discussed in Section 2.4.2, complex resonance eigenvalues corresponding to the given

dissociation channel are located between the rotated continuum and the real axis of

the complex plane. The increased density of complex eigenvalues near the real axis

at the opening of a new channel refers to many long-lived resonances appearing just

above the given dissociation threshold.

If one takes a closer look at the stabilization method histogram generated with the

extended R range, presented in the lower panel of Figure 5.4, it can be noticed that

the peaks of this histogram coincide with the energy thresholds of the new dissociation

channels, clearly visible in Figure 5.5. (Since the current implementation of GENIUSH,

employed during this study, does not exploit symmetry, resonance states corresponding
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Figure 5.5: Resonance eigenvalues of A1(left panel) and B2 (right panel) symmetry, ob-
tained from D2FOPI-CCS computations performed at 40 different scaling parameter
values, in the energy range of [0 − 4800] cm−1.
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Table 5.4: Rotational energies of H+
2 , estimated within the rigid rotor approximation

with first-order correction due to centrifugal distortion, relative to the first dissociation
limit at 1775 cm−1. B = 30.2 cm−1 denotes the rotational constant165 of H+

2 , D = 0.018
cm−1 is the quartic centrifugal distortion constant,165 and j is the rotational quantum
number of H+

2 . Symmetries are denoted by the A1 and B2 irreducible representations
of the C2v(M) group, which, within the rigid rotor approximation, correlate with the
Σ+ and Σ− irreducible representations of the D∞ rotational group characterizing H+

2 ,
respectively.

Symmetry Ediss j Bj(j + 1) −Dj2(j + 1)2

A1 0 0 0
B2 58 1 60
A1 175 2 181
B2 348 3 360
A1 577 4 597
B2 860 5 890

to both A1 or B2 symmetry appear in the stabilization histograms.) In Table 5.3,

resonance states with long lifetimes appearing just above the dissociation thresholds

highlight the opening of the new channels.

If one estimates, within the rigid rotor approximation, augmented with a centrifugal

distortion correction,165 the rotational energies of the H+
2 molecule at different values

of the diatomic rotational quantum number j, as listed in Table 5.4, it can be observed

that these energies coincide with the energies corresponding to the opening of the new

dissociation channels, given relative to the first dissociation limit of H2He+.

The resonance wave functions in the asymptotic region reflect the symmetries and

rotational excitations of the corresponding H+
2 product states: even j quantum num-

bers correspond to A1 symmetry, while channels characterized by odd j values corre-

spond to B2 symmetry.

R− θ cuts of GENIUSH-CAP resonance wave function plots corresponding to the

first three resonances of each new dissociation channel are shown in Figure 5.6. Each

row of Figure 5.6 corresponds to one dissociation channel and contains wave functions

with the same nodal structure in the θ coordinate. That is, the resonance wave func-

tions of the 1st row feature no nodes along the θ coordinate. Starting from the second

row, wave functions of each row feature 1, 2, 3 and 4 nodes, i.e., single, double, triple,
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Figure 5.6: R − θ wave function cuts of three resonances states (their absolute values
are plotted) of H2He+ emerging just above the first five new dissociation channels cor-
responding to rotational excitations of H+

2 , i.e., j = 0, 1, 2, 3, and 4. These resonances
are obtained from GENIUSH-CAP computations carried out utilizing the Rmax = 50
bohr GENIUSH stabilization computation. The CAP is switched on between 40-50
bohr along the R dissociation coordinate. The R coordinate is given in bohr, θ is given
in radian.
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and quadruple excitations of the intermonomer bending motion, respectively. Due to

the J = 0 constraint, this bending motion can be associated with the rotational motion

of H+
2 , characterized by the j quantum number. Thus, each dissociation channel (each

row of Figure 5.6) corresponds to the rotational excitations of the H+
2 product, i.e.,

j = 0, 1, 2, 3, and 4 for the first five channels. The relative energies of the dissociation

channel openings are in good agreement with the rotational energies of H+
2 listed in

Table 5.4. Note that the opening of further dissociation channels characterized by

larger j quantum numbers can also be observed at higher energies.

As Figure 5.5 shows, the first dissociation channel corresponding to B2 symmetry

(right panel of Figure 5.5) opens about 60 cm−1 above the first dissociation threshold,

of A1 symmetry (left panel), giving rise for B2 symmetry bound states above the lowest

dissociation limit of the H2He+ molecule, as discussed in Section 5.5.1.

The third resonance states of the rows of Figure 5.6, i.e., the third resonances above

the newly opened dissociation thresholds, are not seen in Table 5.3, since their count

number in the stabilization histogram based on the extended R range do not reach 10.

This is because their wave functions are localized mainly in the asymptotic region. In

contrast, the first resonances appearing just above the dissociation energies (first plot

of each row in Figure 5.6) have significant peaks in the stabilization histogram. The

second lowest resonance states above the channel openings (middle plots of the rows of

Figure 5.6) are usually also indicated by stabilization histogram peaks, although with

lower count numbers, due to the fact that their wave functions extend more into the

asymptotic region.

Going from left to right in a given row of Figure 5.6, an increasing number of nodes

in the R coordinate can also be observed. This observation refers to the increasing

relative kinetic energy of the products above the given dissociation channel, which

results in a decrease in the wavelength of the continuum wave describing the wave

function at the asymptotic region of the PES. Later in this thesis a similar phenomenon

will also be discussed in the case of the H2·CO complex.
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Figure 5.7: Complex coordinate scaling resonance eigenvalues of B2 symmetry ob-
tained at 40 different values of the scaling parameter, zooming in the energy range
of [1800, 3200] cm−1, while the imaginary part of the resonance eigenvalues is re-
stricted between [−60, 0] cm−1. Blue circles highlight long-lived, isolated resonances,
corresponding to strong coupling of the intramonomer-stretching and intermonomer-
bending motions.

5.5.4 Resonances due to strong internal-motion coupling

Closer inspection of D2FOPI-CCS complex eigenvalues of H2He+ on the complex

plane, presented in Figure 5.5, reveals several isolated eigenvalue trajectories, high-

lighted by blue circles in Figure 5.7. Figure 5.7 only shows resonance eigenvalues

corresponding to B2 symmetry, however, similar isolated states of A1 symmetry were

also found. The complex coordinate scaling trajectories corresponding to these isolated

resonance states cover a very narrow energy range, and they always occur at imaginary

parts between −1 and −4 cm−1. These imaginary parts indicate somewhat shorter life-

times for these resonances than the lifetimes of the resonance states corresponding to

the opening of new dissociation channels.

I have successfully identified these isolated resonances with GENIUSH-CAP, as

well (in the stabilization histograms they could not be found, probably due to their

relatively short lifetimes), where they are also featured by localized eigenvalue tra-

jectories on the complex plane. Plots of the wave functions of five selected isolated

resonances are shown in Figure 5.8. In Figure 5.8 at energies of 2038.6, 2109.0, and

2286.8 cm−1 resonance wave functions transforming according to B2 symmetry are
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seen. The wave functions, also shown in Figure 5.8, of the resonance states at energies

of 2321.6 and 2929.7 cm−1 correspond to A1 symmetry. Symmetry properties of these

isolated resonances are known from both analyzing the resonance wave function plots

and from D2FOPI-CCS computations.

What is common in all of the resonance states of Figure 5.8 corresponding to B2

symmetry, is the excitation pattern seen in all r− θ cuts of their wave functions. This

pattern of five nodes in the θ coordinate corresponds to a quintuple excitation of the

intermonomer bending motion. It is known that in the case of J = 0, where |j| = |l|,

this motion can be associated both with the rotational motion of the He atom around

the H+
2 unit, characterized by the l quantum number, and with the rotational motion

of the H+
2 diatom.

From the wave function plots of Figure 5.8 it is clear that the HH stretching and the

intermonomer bending motions become very strongly coupled, i.e., for different values

of θ the distribution of the wave function along the r coordinate changes considerably.

In the case of resonance states of Figure 5.8 transforming according to A1 symme-

try, in the r − θ cuts of their wave functions four nodes can be observed. This four

nodes refer to quadruple excitation of the intermonomer bending motion of H2He+.

The isolated resonance states of A1 symmetry, similarly to the isolated B2 resonance

states, also feature a motion corresponding to the strong coupling of the intermonomer-

bending and the intramonomer-stretching motions in H2He+.

From the relatively long lifetimes of these isolated resonance states it seems that

energy leakage to the dissociation coordinate from the coupled intermonomer-bending

and intramonomer-stretching motions is small. These kind of resonance states are

perfect examples of Feshbach resonances. In Figure 5.8 one can see that the quintuple

(B2 symmetry) and quadruple (A1 symmetry) excitations of the bending motion can

only be observed in the interaction region of the PES for all the wave functions. On

the other hand, the nodal structure along the θ coordinate in the asymptotic parts of

the wave functions of these Feshbach resonances reveals that these states dissociate

into the nearest lower-lying dissociation channels.
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Figure 5.8: 2D GENIUSH-CAP cuts of the absolute values of selected resonance
wave functions of H2He+, corresponding to isolated D2FOPI-CCS and GENIUSH-
CAP eigenvalue trajectories. These resonance states are found at energies of
2038.6, 2109.0, 2286.8, 2321.6 and 2929.7 cm−1.
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5.6 Concluding remarks

Besides testing of the new code, I have identified several resonance states of the

H2He+ complex, important from an astrophysical point of view. The GENIUSH-

CAP code has been validated by comparing the resonance energies and lifetimes of

H2He+ with those obtained from complex coordinate scaling computations, employing

the D2FOPI-CCS code, developed in our group.5 The comparison shows excellent

agreement: resonance energies agree within a few 0.1 cm−1, while the lifetimes of the

resonance states are computed within the same order of magnitude. Inspection of

resonance wave functions has been shown to provide useful qualitative information

about the nature of the resonance states.

Furthermore, GENIUSH-CAP, D2FOPI-CCS, and stabilization method compu-

tations have revealed interesting features of the resonance states of H2He+. These

features have been resolved by analyzing resonance wave functions provided by

GENIUSH-CAP. Based on a wave-function analysis and also on rigid-rotor energies,

opening of new dissociation channels could be assigned to the rotational excitations of

H+
2 . Because the second lowest dissociation channel, corresponding to B2 symmetry,

opens approximately 60 cm−1 above the first one, of A1 symmetry, B2 bound states

could be found as extremely long-lived resonances above the first dissociation threshold

of the complex.

In addition, several isolated Feshbach resonance states have been identified, which

appear due to strong intramonomer-stretching and intermonomer-bending coupling.

Based on this observation, and also on 2D GENIUSH computations, it seems that in

H2He+, unlike in Ar·NO+, the internal degrees of freedom are considerably coupled.
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Chapter 6

Resonance states of the H2·CO

complex

6.1 Introduction to the H2·CO complex

The H2·CO complex serves as a benchmark system for those who study weakly-

bound molecular complexes. The H2·CO complex also has astrophysical importance,

as H2 and CO are the first and second most abundant molecules in space, respectively.

While H2 cannot be observed at low temperatures, CO is very easy to detect in inter-

stellar space. Therefore, CO is used for tracing H2 in low-temperature regions, through

its rotational excitation or deexcitation due to collisions with H2.11 In cross-beam ex-

periments, Chefdeville and co-workers10 investigated the inelastic collisions of H2 and

CO in detail, and for the first time they have resolved the resonance structure of these

processes.

Among the three nuclei forming the H12
2 C16O complex, only protons have non-

zero nuclear spins. In what follows H2·CO always means the H12
2 C16O complex. Thus,

depending on the coupling of the nuclear spins of the H nuclei, the H2·CO complex can

be either in an so-called ortho or in a para state. Ortho-H2·CO has a symmetric nuclear

spin wave function, and para-H2·CO has an antisymmetric one. The total molecular

wave function must be antisymmetric since the H nucleus is a fermion; therefore, the

rovibrational wave function of ortho-H2·CO must be antisymmetric with respect to the
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permutation of the protons. Naturally, the reverse holds for para-H2·CO. This implies

that only odd rotational quantum numbers are allowed for H2 in ortho-H2·CO, while

in para-H2·CO H2 can exist only in states described by an even rotational quantum

number j1.

The infrared (IR) spectrum of H2·CO has been measured in 1998, and transitions

corresponding to para-H2·CO were successfully identified.166 The IR spectrum of ortho-

H2·CO has not been possible to fully assign until a very accurate PES was developed

by Jankowski and Szalewicz,6;167 using state-of-the-art electronic structure theory and

a procedure averaging over the monomer vibrations. This PES meant a significant

correction to previous PESs,168;169 which could reproduce experimental transitions

of para-H2·CO, but failed in the case of ortho-H2·CO. A full-dimensional PES was

developed later for H2·CO.170

Both the para and the ortho forms of H2·CO have quite low dissociation thresholds

and thus they possess only a few bound states. Thus, it is worth investigating the

resonance states of this complex as they may have an important role in the chemistry

of H2·CO. Using the different PESs developed for H2·CO,6;167–170 several attempts have

been made to understand the resonance structure of this complex. These studies10;12;171

showed that resonance states of H2·CO play an important role in inelastic collisions of

H2 and CO, as well as in resolving the IR spectrum of the complex.

Employing GENIUSH-CAP, I have determined numerous resonance states of the

H2·CO complex and analyzed them in detail. This is the first case, to the best of

my knowledge, when a four-atomic system is subjected to a non-Hermitian variational

resonance computation.

6.2 Computational details

6.2.1 The potential energy surface

The nuclear motion computations of the H2·CO complex employed a 4D PES. The

PES, taken from Ref. 167, is averaged over the intramonomer vibrations, corresponding
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Figure 6.1: A coordinate system describing the intermolecular degrees of freedom of
H2·CO, used in the reduced-dimensional GENIUSH computations of this study.

to the v = 0 states of CO and H2. The first dissociation limit of H2·CO corresponds to

the dissociation of the para-H2·CO complex, with threshold energies of De,para = 94.096

cm−1 and D0,para = 19.440 cm−1.6;167 Naturally, in this case the H2 product is in

its ground rotational state (j1 = 0). The dissociation limit corresponding to ortho-

H2·CO, D0,ortho, where the H2 product is in its first-excited rotational state (j1 = 1) is

2B above the para dissociation energy (within the rigid rotor approximation), where

B refers to the rotational constant of the H2 molecule. In the case of GENIUSH-

CAP computations, one obtains both the para- and the ortho-H2·CO states in the

same computation. The 4D model implies that the B rotational constant corresponds

to the frozen bond length, 1.449 bohr, proposed in Ref. 167 for the H2 monomer;

thus, B4D = 56.919 cm−1. This is 2.403 cm−1 lower than the experimental value172

of Bexpt = 59.322 cm−1. Therefore, the ortho dissociation energy obtained from the

reduced-dimensional model, 113.838 cm−1 relative to the para dissociation limit, is

4.806 cm−1 lower than the experimental value of the ortho dissociation energy, 118.644

cm−1. Thus, we expect to obtain ortho-H2·CO energy levels approximately 5 cm−1

lower (the convergence of certain states may vary) than the absolute energies obtained

from experiments.

6.2.2 Computation of resonance states

During the nuclear motion computations generalized Jacobi coordinates were em-

ployed to represent the intermolecular motions of H2·CO. These coordinates are

sketched in Figure 6.1. The equilibrium structure of the complex is characterized

by Req = 7.9145 bohr, θ1,eq = 0◦, θ2,eq = 180◦, and ϕeq = 0◦. The intramonomer
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vibrations are kept frozen during the GENIUSH bound-state computations. In these

computations the following intervals and basis sets are used for the active coordinates:

R ∈ [5.0, 40.0] bohr with 200 scaled Laguerre-DVR points, θ1 and θ2 ∈ (0.0, 180.0)◦

with 30 and 30 unscaled Legendre-DVR points, respectively, and ϕ ∈ [0.0, 360.0]◦ with

51 scaled Fourier-DVR points. The intramonomer distances were fixed at 1.449 and

2.140 bohr for H2 and CO, respectively.167 The following masses were used during these

computations: mH = 1.007825035 u, mC = 12.00000000 u, and mO = 15.99491463 u.

During the GENIUSH-CAP computations the R interval where the CAP was

switched on was changed between 20 and 40 bohr, with the starting value of R (20

bohr) being increased by a step size of 5 bohr. 220 vibrational GENIUSH eigenvectors

were used as a basis for the CAP computations. Convergence of resonance states,

varying between 0.1 − 1 cm−1 for a given resonance, was tested by changing the num-

ber of basis functions on each coordinate by 10 %. All the resonance energies in this

Chapter are given relative to the para-H2·CO zero-point energy (ZPE), which is 74.66

cm−1 (the value of the PES is 0.00 cm−1 at the global minimum). All three bound vi-

brational states of para-H2·CO obtained with GENIUSH agree well, within 0.03 cm−1,

with those reported in Ref. 6.

6.3 The ortho-H2·CO bound states

I have determined several vibrational resonance states of the H2·CO complex em-

ploying the GENIUSH-CAP program. Since the first dissociation limit of H2·CO,

as mentioned above, is D0,para = 19.440 cm−1, in GENIUSH-CAP computations one

obtains all the states that have higher energy then D0,para as resonance states. The

dissociation limit corresponding to the ortho-H2·CO complex, 113.838 cm−1 relative

to the para dissociation limit and 133.278 cm−1 relative to the para-H2·CO ZPE in

the 4D model, lies much higher than D0,para. The ZPE of the ortho-H2·CO complex is

97.97 cm−1 relative to the para dissociation limit.6 Thus, all the bound states corre-

sponding to the ortho-H2·CO complex are expected to be obtained as resonance states

with GENIUSH-CAP. In line with this, I found seven extremely long-lived resonances

below the dissociation energy of ortho-H2·CO in my GENIUSH-CAP computations.
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Energies and lifetimes of these ortho states are listed in Table 6.1.

Table 6.1: Resonance energies (cm−1) relative to the para-H2·CO zero-point (p-ZPE)
energy (1st column), lifetimes (ns), and resonance energies relative to the ortho-H2·CO
zero-point energy (o-ZPE) (3rd column) of extremely long-lived resonance states of the
ortho-H2·CO complex, obtained from GENIUSH-CAP computations. Bound energy
levels (cm−1) relative to p-ZPE (4th column), and relative to o-ZPE (5th column)
taken from Ref. 6. The last column contains the differences between the GENIUSH-
CAP resonance energies and the bound-state energies of Ref. 6, both relative to p-
ZPE. Bound and resonance energies, relative to o-ZPE are in good agreement and are
boldfaced.

GENIUSH-CAP Ref. 6 difference
Eres rel.
to p-ZPE lifetime Eres rel.

to o-ZPE*
Ebound rel.
to p-ZPE

Ebound rel.
to o-ZPE

Ebound − Eres
rel. to p-ZPE

112.9 43.9 0.4 117.8 0.4 4.8
113.6 9.2 1.1 118.6 1.2 4.9
116.9 23.3 4.3 121.7 4.3 4.9
118.1 6.5 5.6 123.1 5.7 5.0
125.6 21.8 13.0 130.5 13.1 4.9
131.3 24.9 18.7 136.3 18.9 5.0
131.3 14.4 18.8 136.4 19.0 5.1

*Assuming that the lowest J = 0 states are the same.

In the joint experimental and theoretical work of Ref. 6 also seven vibrational

bound-state energies have been reported for ortho-H2·CO. However, the energy levels

reported in Ref. 6 were obtained from separate computations for para- and ortho-

H2·CO, and the ortho-H2·CO bound-state energies were shifted later with the ex-

perimental value of D0,ortho, 118.644 cm−1 with respect to the para dissociation. The

GENIUSH-CAP ortho-H2·CO energy levels therefore deviate by approximately 5 cm−1

from the results of Ref. 6. This is the difference between the experimental and the

reduced-dimensional theoretical D0,ortho values.

Apart from the 5 cm−1 absolute difference, the transitions of the measured in-

frared spectrum agree very well, within 0.1 − 0.2 cm−1, with their GENIUSH-CAP

counterparts. This good agreement is highlighted by the boldfaced numbers in Table

6.1, corresponding to GENIUSH-CAP relative energies (3rd column of Table 6.1) and

relative energies computed (and also determined experimentally) in Ref. 6 (5th column

of Table 6.1). These relative energies are measured from the ZPE of ortho-H2·CO. In
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Figure 6.2: Selected GENIUSH-CAP resonance wave-function cuts of extremely long-
lived resonance states corresponding to the bound states of the ortho-H2·CO complex.
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J = 0 GENIUSH-CAP computations, where J is the total rotational quantum number

of the system, the rovibrational ground state of ortho-H2·CO does not appear, since

it is found in the J = 1 manifold. This indicates that H2·CO belongs to the group

of molecules featuring negative rotational energies.173;174 However, from Ref. 6 it is

known that the ortho-H2·CO ZPE is 0.39 cm−1 lower than the lowest J = 0 state.

Thus, to compare energy differences between the seven extremely long-lived resonance

states of ortho-H2·CO obtained from GENIUSH-CAP and between the bound vibra-

tional ortho-H2·CO states computed in Ref. 6, it was assumed that the lowest J = 0

states of the ortho-H2·CO complex are the same in the two computations.

GENIUSH-CAP resonance wave function plots of the seven extremely long-lived

resonances are presented in Figure 6.2. All of the GENIUSH-CAP eigenvalue trajecto-

ries of these states cover a very narrow energy range, and the corresponding eigenvalues

could be converged to within 0.1 cm−1. Thus, not surprisingly, the wave-function plots

of these high-lying resonance states reveal that these states are perfectly localized in

the potential well along the R coordinate. The wave functions show a very clear struc-

ture implying intermonomer bending excitations, which structure also support the fact

that they correspond to the bound states of the ortho-H2·CO complex. Assignments

proposed for the ortho-H2·CO bound states in Ref. 6 are supported by the corre-

sponding GENIUSH-CAP resonance wave-function plots. Note that the appearance

of the ortho-H2·CO bound states as resonances with finite lifetimes is due only to the

utilization of the CAP.

6.4 Vibrational resonances of para-H2·CO

I have also identified several resonances appearing in the energy region [D0,para, 50]

cm−1. Energies and lifetimes of these resonance states, having an imaginary part

greater than −1.0 cm−1, are listed in Table 6.2. In Figure 6.3 the GENIUSH-CAP

eigenvalue trajectories corresponding to two selected resonance states of para-H2·CO,

those with energies of 19.5 cm−1 and 24.2 cm−1, are shown. In Figure 6.4 the resonance

wave functions of these two resonances are presented. The resonance state at 19.5 cm−1

(left panels of Figure 6.4) is just above the D0,para limit, with a lifetime as large as
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Table 6.2: Resonance energies and lifetimes of the para-H2·CO complex computed
with GENIUSH-CAP. 1st and 2nd columns show all resonance positions and lifetimes,
respectively, in the range of [D0,para, 50] cm−1, having an imaginary part greater than
−1.0 cm−1. The 3rd and 4th columns show energies of the resonance states relative
to the first resonance state, and to the new dissociation channels characterized by the
rotational energies of CO, respectively. The 5th column shows assignments (see the
text for details) of the resonances listed in columns 1 and 2. Resonance positions are
given in cm−1, while lifetimes are given in ps. The meaning of boldfaced numbers is
discussed in the text.

Re(Eres) lifetime Erel,j2=0 Erel,j2 j2 n

19.5 1810 0.0 0.0 0 0
20.3 175 0.8 0.8 0 1
21.8 67 2.4 2.4 0 2
23.3 515 3.8 0.0 1 0
24.0 46 4.5 0.7 0 3
24.2 96 4.7 0.9 1 1
25.7 63 6.2 2.4 1 2
26.8 25 7.3 3.5
27.8 42 8.3 4.5 1 3
29.6 48 10.1 6.3
31.5 124 12.0 0.0 2 0
31.8 55 12.3 0.3
32.3 77 12.8 0.8 2 1
32.3 74 12.8 0.8
33.7 43 14.2 2.2 2 2
36.1 30 16.6 4.6 2 3
43.2 85 23.7 11.7
43.4 239 23.9 0.0 3 0
44.2 62 24.7 0.8
44.4 96 24.9 1.0 3 1
45.8 52 26.3 2.4 3 2
47.8 29 28.3 4.4 3 3

1810 ps, and its wave function is localized mainly at 8-9 bohr and further at 15-25

bohr. Inspection of the right panels of Figure 6.4 reveals that the shorter-lived (96 ps)

resonance state at 24.2 cm−1 features a more extended wave function along R, mainly

localized at the asymptotic region of the PES.

In Table 6.2 assignments are proposed for some of the resonance states of para-

H2·CO. In Figure 6.5, the R − θ2 cuts of the resonance wave functions of selected

para-H2·CO states are plotted. In different rows of Figure 6.5 different number of

nodes along the θ2 coordinate appear in the resonance wave functions, which can be
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Figure 6.3: GENIUSH-CAP eigenvalue trajectories of two selected resonance states of
the para-H2·CO complex, with resonance energies 19.5 and 24.2 cm−1, corresponding
to the wave function plots of Figure 6.4. Orange and purple dots refer to 200 and
220 basis functions along the R dissociation coordinate in the GENIUSH bound-state
computations, respectively.

associated with increasing rotational excitation of the CO monomer, characterized by

the j2 quantum number. The rotational energies of the CO molecule, estimated within

the rigid rotor approximation using the rotational constant BCO = 1.9 cm−1, are 3.8,

11.4, and 22.8 cm−1 for j2 = 1, 2, and 3, respectively. The energies of the leftmost

resonances in the rows of Figure 6.5, given relative to the energy of the first resonance

above D0,para, are boldfaced in the third column of Table 6.2. These energies coincide

with the rigid rotor energies of CO. These resonances also exhibit long lifetimes. Thus,

similarly to the case of H2He+, detailed in Section 5.5.3, for the H2·CO complex opening

of new dissociation channels can also be related to the rotational excitation of one of

the monomers, here the CO molecule.

Resonance states above the dissociation energy of a given channel characterized

by j2, shown within the rows of Figure 6.5, feature an increasing number of nodes in

the R coordinate. These nodes, as in the case of the H2He+ molecular ion, refer to

increasing relative kinetic energy of the monomers, which manifests in smaller- and

smaller-wavelength continuum waves describing the asymptotic parts of the resonance

wave functions along the R coordinate. The resonance states corresponding to a given

dissociation channel (a given row of Figure 6.5) can be labeled with the n sequential

“quantum number” starting from zero for each new j2 state. The fourth and fifth

columns of Table 6.2 reveal that the energies of the resonances, labeled with n = 1, 2

and 3 corresponding to a given j2 quantum number, increases approximately with 0.8,
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Figure 6.4: 2D GENIUSH-CAP wave function plots (the other coordinates are held
fixed at their equilibrium values), depicting the square of the absolute value of the
complex resonance eigenvectors, of two selected resonance states of the H2·CO complex,
with resonance energies 19.5 and 24.2 cm−1. The CAP is switched on between 35-40
bohr along the R dissociation coordinate. The R coordinate is given in bohr, θ1 and
θ2 are given in radian.
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Figure 6.5: 2D R− θ2 GENIUSH-CAP wave function plots (the other coordinates are
held fixed at their equilibrium values), depicting the square of the absolute value of the
complex resonance eigenvectors, of 12 selected resonance states of the H2·CO complex,
with resonance energies 19.5, 20.3, 21.8, 23.3, 24.2, 25.7, 31.5, 32.3, 33.7, 43.4, 44.4
and 45.8 cm−1. The CAP is switched on between 35-40 bohr along the R dissociation
coordinate. The R coordinate is given in bohr, θ2 is given in radian.

89



2.4 and 4.5 cm−1 relative to the energy of the n = 0, j2 state, respectively. Table 6.2

also shows that the lifetimes of the resonance states decrease with increasing n, in line

with the delocalization of their wave functions along R.

6.5 Vibrational resonances of ortho-H2·CO

Table 6.3: Resonance energies (cm−1) and lifetimes (ps) computed for ortho-H2·CO
with GENIUSH-CAP in the range of [D0,ortho, 150] cm−1 having an imaginary part
greater than −1.0 cm−1.

Re(Eres) lifetime Re(Eres) lifetime
136.2 4128 139.3 86
136.9a 3877 139.8 77
137.0 3663 140.7 25
137.5 300 141.1 45
137.7 224 141.2 52
137.9 38 141.9 37
137.9 190 143.7 29
138.6 125 143.8 44
139.2 82 144.6 678

aThis resonance state was also reported in Ref. 6

I have also found several resonance states in the [D0,ortho − 150] cm−1 energy inter-

val, they are listed in Table 6.3. Just above the D0,ortho threshold, between 136 − 137

cm−1, three very long-lived resonance states were identified (see Table 6.3). The cor-

responding three resonance wave functions are presented in Figure 6.6. Interestingly,

these wave-function plots suggest that all three of these resonance states correspond

to the ortho-H2·CO complex, where both the H2 and the CO moieties are in their first

rotationally excited states, i.e., j1 = 1 and j2 = 1, respectively.

However, j1 and j2 are only approximate quantum numbers, and this is why these

states split according to the m1 and m2 quantum numbers, which are related to the

projection of ĵ1 and ĵ2 onto the intermolecular axis connecting the centers of masses

of the H2 and CO units. Hence, m1 and m2 quantum numbers are also related to

excitations along θ1 and θ2, respectively. However, due to the J = 0 constraint not all

the 3 × 3 = 9 possible combinations of m1 and m2 can be seen in our computations.

The following combinations are feasible (the signs are not assigned): m1 = ±1 with
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Figure 6.6: Selected 2D cuts of the GENIUSH-CAP wave function plots (the other
coordinates are held fixed at their equilibrium values), depicting the square of the ab-
solute value of the complex resonance eigenvectors, of the three longest-lived resonance
states of H2·CO above D0,ortho, with resonance energies 136.2, 136.9 and 137.0 cm−1.
The CAP is switched on between 35-40 bohr along the R dissociation coordinate. The
R coordinate is given in bohr, θ1, θ2 and ϕ are given in radian

m2 = ∓1, m1 = m2 = 0, and m1 = ∓1 with m2 = ±1. The first three long-lived

ortho-H2·CO resonances, presented in Table 6.3, most probably belong to these three

types of combinations of m1 and m2.

The ortho-H2·CO resonance state corresponding to the opening of the j2 = 2 chan-

nel, where the rotational motion of CO is doubly excited, at 144.6 cm−1 could also be
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Figure 6.7: 2D GENIUSH-CAP wave function plots (the other coordinates are held
fixed at their equilibrium values), depicting the square of the absolute value of the
complex resonance eigenvector, of the ortho-H2·CO resonance state with energy 144.6
cm−1 (relative to the zero-point energy of para-H2·CO). The CAP is switched on be-
tween 35-40 bohr along the R dissociation coordinate. The R coordinate is given in
bohr, θ1, θ2 and ϕ are given in radian.

identified with a long lifetime; the corresponding resonance wave function is presented

in Figure 6.7. These wave function plots show considerable delocalization along the

dissociation coordinate along with a clear double excitation along the θ2 coordinate.

6.6 Concluding remarks

Using the newly-developed GENIUSH-CAP code, I have determined several reso-

nance states of the weakly-bound H2·CO complex, which are the first resonances of a

four-atomic system determined by using a variational non-Hermitian technique. In our

computations a reduced-dimensional model was employed describing the intermonomer

motions. The bound states of ortho-H2·CO could be identified as extremely long-lived

resonance states well above the first dissociation limit corresponding to para-H2·CO.

This identification is supported by the good agreement between the energy differences

extracted from the experimental IR spectrum of H2·CO and the energy differences of

the long-lived resonance states computed with GENIUSH-CAP. The analysis of the

corresponding resonance wave functions also strengthened the identification.

Furthermore, I have identified numerous resonance states of the para-H2·CO com-

plex and assigned them, based on the analysis of their resonance wave function plots, to
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different dissociation channels corresponding to rotational excitations of CO. Numer-

ous resonances of ortho-H2·CO were also found. The three lowest-lying ortho-H2·CO

resonances seem to correspond to rotational excitations of the monomers.
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Chapter 7

Summary and conclusions

During my PhD years I have developed a general code based on the variational

principle for computing rovibrational resonance states of polyatomic molecules. I ap-

plied the new code successfully for the Ar·NO+, H2He+, and H2·CO weakly-bound

complexes.

I have linked the non-Hermitian complex absorbing potential (CAP) technique,

a popular method used to determine resonance states, to GENIUSH, an in-house,

general quasi-variational program capable of computing bound rovibrational states

of polyatomic molecules. The new resonance-computing code is named GENIUSH-

CAP. Besides having an effective implementation, GENIUSH-CAP also exploits all the

advantages of GENIUSH, which are as follows: the possibility of using an arbitrary,

suitably defined internal coordinate system, reduced-dimensional models, which can

be defined with relative ease, and treating, in principle, arbitrary-sized molecules. The

GENIUSH-CAP code has been tested and validated by comparing its results, i.e.,

resonance energies and lifetimes, with those obtained from the triatomic D2FOPI-

CCS code, also developed in our group, using the H2He+ molecule as a test system.

Resonance energies always agreed within a few 0.1 cm−1, while lifetimes were always

computed in the same order of magnitude by the two different methods, confirming

the correctness of the implementation of GENIUSH-CAP.

After augmenting the GENIUSH-CAP and D2FOPI-CCS results with those ob-

tained from stabilization computations, I have identified several dissociation channels
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of the H2He+ molecular ion corresponding to different rotational excitations of the H+
2

diatom. Isolated resonances of H2He+, forming due to the strong coupling between the

intermonomer bending and intramonomer stretching motions, have also been found.

Resonance wave function plots, obtained from GENIUSH-CAP computations, pro-

vided essential information employed during this analysis.

I have employed GENIUSH-CAP, along with the stabilization method, to explore

the resonance states of the Ar·NO+ complex. Stabilization computations revealed an

interesting repetitive pattern of resonance states of Ar·NO+ at energies much above

the first dissociation threshold of the complex. It turned out that the resonance states

forming this pattern are long-lived Feshbach-resonances, in which the complete set

of intermonomer stretching and bending motions are recognizable for each vibrational

excitation of the NO+ moiety. Furthermore, GENIUSH-CAP results were compared to

those of close-coupling scattering computations for the low-lying vibrational resonances

of Ar·NO+. The two fundamentally different methods provide resonance energies and

lifetimes in good agreement. To the best of my knowledge, a detailed comparison of

the two techniques, apart from our work, has not been reported in the literature.

A four-atomic system, namely the H2·CO complex, has also been subjected to

GENIUSH-CAP computations. Exploiting the possibility of the simple definition of

reduced-dimensional models in GENIUSH, 4D computations (fixing the two monomeric

stretches) were carried out for H2·CO. Bound vibrational states of ortho-H2·CO with

energies well above the complex’s first dissociation limit have been identified as ex-

tremely long-lived resonances. This identification is also supported by the experimental

IR spectrum of H2·CO. Furthermore, several resonance states corresponding to both

the para- and the ortho-H2·CO complex have been found and assigned, based on the

analysis of their wave functions. Investigation of para-H2·CO resonances revealed the

opening of dissociation channels corresponding to increasing rotational excitations of

the CO monomer. Three long-lived resonances of ortho-H2·CO are found to correspond

to the rotational excitations of the two monomers. To the best of my knowledge, these

are the first variational resonances, determined with a non-Hermitian quantum chem-

ical method, of a system containing more than three atoms.

In summary, I have developed a general code, called GENIUSH-CAP, capable of
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determining resonance states of arbitrary-sized semirigid and flexible molecules. Em-

ploying the new GENIUSH-CAP program, complemented with stabilization and com-

plex coordinate scaling computations, revealed interesting features of weakly-bound

molecular complexes slightly and also well above their first dissociation thresholds.

The results obtained augment significantly our qualitative understanding of the dy-

namical behavior of van der Waals systems of fundamental chemical importance.
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Chapter 8

Összefoglalás

Doktori munkám során egy olyan kvantumkémiai programot fejlesztettem ki, amely

variációs alapon határozza meg tetszőleges méretű, flexibilis molekulák rezgési-forgási

rezonancia állapotait. Az újonnan fejlesztett programot sikeresen alkalmaztam az

Ar·NO+, a H2He+, és a H2·CO gyengén kötött molekulakomplexek esetében.

Módszerfejlesztési munkám során hozzáillesztettem a komplex elnyelő potenciál

(complex absorbing potential, CAP) módszert a csoportunkban kidolgozott, variá-

ciós alapú kvantummechanikai GENIUSH programhoz. A GENIUSH egy általános,

program, amely félmerev és flexibilis, többatomos molekulák kötött rezgési-forgási

állapotainak számítására használható. A CAP módszer hatékony implementációja

lehetővé teszi, hogy kihasználjuk a GENIUSH program által kínált összes előnyt:

a GENIUSH-ban lehetőség van tetszőleges, a rezgési-forgási probléma leírására leg-

megfelelőbb koordináta-rendszer alkalmazására, valamint redukált dimenziós modellek

is egyszerűen definiálhatók. A GENIUSH-CAP program validálását a H2He+ teszt

rendszer segítségével végeztem el, úgy, hogy a GENIUSH-CAP program segítségével

számított rezonancia energiákat és élettartamokat összehasonlítottam a háromatomos

molekulák kezelésére alkalmas, komplex koordináta skálázást (complex coordinate scal-

ing, CCS) alkalmazó, a csoportunkban kifejlesztett D2FOPI-CCS programmal számí-

tott rezonancia energiákkal és élettartamokkal. A két különböző programmal számí-

tott rezonancia energiák általában néhány tized cm−1-en belül egyeztek meg, míg a

rezonancia állapotok számított élettartama mindig ugyanabba a nagyságrendbe esett.
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A GENIUSH-CAP számításokat az ún. stabilizációs módszerrel és a D2FOPI-

CCS programmal számított eredményekkel kiegészítve a H2He+ molekulaion esetében

több, a H+
2 monomer forgási gerjesztéseihez tartozó disszociációs csatorna létezésére

mutattam rá. Továbbá számos, a molekula belső mozgásainak erős csatolódásából

adódó rezonancia állapotot is sikerült azonosítanom. A kvalitatív elemzések alapjául

a GENIUSH-CAP segítségével előállított rezonancia hullámfüggvények szolgáltak.

A GENIUSH-CAP program és a stabilizációs módszer segítségével az Ar·NO+ kom-

plex rezonancia állapotait is vizsgáltam. A stabilizációs számítások az Ar·NO+ rezo-

nancia állapotainak egy érdekes, jóval az első disszociációs energia felett is ismétlődő

szerkezetére mutattak rá. Ezt a szerkezetet hosszú élettartamú Feshbach rezonanciák

alkotják: az NO+ monomer rezgésileg gerjesztett állapotaira rakódó, az intermonomer

mozgások gerjesztéseihez tartozó állapotok. A GENIUSH-CAP eredményeket szórási

számításokkal is összehasonlítottam az első disszociációs határhoz közeli rezgési rezo-

nanciák esetében. A két alapvetően különböző módszerből nyert rezonancia energiák

és élettartamok jó egyezést mutattak. Ilyen jellegű összehasonlítást, a mi munkánkon

kívül, még nem publikáltak az irodalomban.

Végül egy négyatomos rendszer, a H2·CO molekulakomplex rezonancia állapotait is

vizsgáltam a GENIUSH-CAP módszer segítségével. Ez esetben az orto-H2·CO komplex

kötött állapotait hosszú élettartamú rezonancia állapotokként sikerült azonosítanom,

jóval az első, a para-H2·CO-hoz tartozó disszociációs határ felett. Ezt az asszignációt a

H2·CO komplex kísérleti infravörös színképéből nyert információk is megerősítik. Szá-

mos további rezonancia állapotot azonosítottam mind az orto-, mind a para-H2·CO

komplex esetében. A para-H2·CO komplex első disszociációs energiája felett több dis-

szociációs csatornát is találtam, amelyek a CO monomer különböző forgási gerjeszté-

seihez tartoznak. Három hosszú élettartamú ortho-H2·CO rezonanciát is a monomerek

forgási gerjesztéseihez tudtam rendelni. Tudomásom szerint a H2·CO komplex az

első négyatomos rendszer, amelynek a rezonancia állapotait nem-Hermitikus, variá-

ciós alapú módszerekkel sikerült azonosítani.

Doktori munkám fő eredménye a GENIUSH-CAP program kifejlesztése, amely egy

általános variációs kód többatomos, félmerev és flexibilis molekulák rezgési-forgási

rezonancia állapotainak meghatározására. A GENIUSH-CAP program, valamint a
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stabilizációs és a komplex koordináta skálázás módszerek segítségével gyengén kötött

molekulakomplexek számos érdekes tulajdonságára mutattam rá a disszociációs határ

felett. Ezek az új ismeretek nagyban hozzájárulnak e kémiai szempontból alapvető

fontosságú molekuláris rendszerek viselkedésének mélyebb megértéséhez.
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