List of Published Papers

 

101.  L. Fehér and I. Marshall,  The action-angle dual of an integrable Hamiltonian system of Ruijsenaars-Schneider-van Diejen type,  J. Phys. A: Math. Theor.  50,  314004 (20pp)  (2017).

 

100.  L. Fehér and T.F. Görbe, The full phase space of a model in the Calogero-Ruijsenaars family, J. Geom. Phys. 115, 139-149 (2017).

 

99.  L. Fehér and T.F. Görbe, Trigonometric and elliptic Ruijsenaars-Schneider systems on the complex projective space, Lett. Math. Phys. 106, 1429-1449  (2016).

 

98.  L. Fehér and T.F. Görbe, On a Poisson-Lie deformation of the BC(n) Sutherland system, Nucl. Phys. B 901, 85-114 (2015).

 

97. T.F. Görbe and  L. Fehér, Equivalence of two sets of Hamiltonians associated with the rational BC(n) Ruijsenaars-Schneider-van Diejen system, Phys. Lett. A 379,  2685-2689  (2015).

 

96.  L. Fehér and  B.G. Pusztai, Generalized spin Sutherland systems revisited,  Nucl. Phys. B 893, 236-256 (2015).

 

95.  L. Fehér and T.F. Görbe, Duality between the trigonometric BC(n) Sutherland system and a completed rational Ruijsenaars-Schneider-van Diejen system, Journ. Math. Phys. 55, 102704 (2014).

 

94.  L. Fehér and T.J. Kluck, New compact forms of the trigonometric Ruijsenaars-Schneider system, Nucl. Phys. B 882, 97-127 (2014).

 

93.  L. Fehér, Action-angle map and duality for the open Toda lattice in the perspective of Hamiltonian reduction, Phys. Lett. A 377, 2917-2921 (2013).

 

92. L.Fehér, An application of the reduction method to Sutherland type many-body systems, pp. 109-117 in: Geometric Methods in Physics, XXXI  Workshop, eds. P. Kielanowski et al (Birkhauser, 2013).

 

91.  L. Fehér and C. Klimcik, The Ruijsenaars self-duality map as a mapping class symplectomorphism, pp. 423-437 in: Lie Theory and Its Applications in Physics, IX International Workshop, ed. V. Dobrev (Springer, 2013).

 

90. V. Ayadi, L. Fehér and T.F. Görbe, Superintegrability of rational Ruijsenaars-Schneider systems and their action-angle duals, J. Geom. Symmetry Phys. 27,  27-44 (2012).

89.  L. Fehér and C. Klimcik, On the spectra of the quantized action variables of the compactified Ruijsenaars-Schneider system, Theor. Math. Phys. 171, 704-714 (2012).

88.  L. Fehér and C. Klimcik, Self-duality of the compactified Ruijsenaars-Schneider system from quasi-Hamiltonian reduction, Nucl. Phys. B 860, 464-515 (2012).

87. V. Ayadi and L. Fehér,  An integrable BC(n) Sutherland model with two types of particles,  Journ. Math. Phys 52, 103506 (2011).

86.  L. Fehér, C. Klimcik and S. Ruijsenaars,  A note on the Gauss decomposition of the elliptic Cauchy matrix , J. Nonlin. Math. Phys. 18, 179-182 (2011).

85. L. Fehér and  C. Klimcik, Poisson-Lie interpretation of trigonometric Ruijsenaars duality,  Commun. Math. Phys. 301, 55–104 (2011).

84. L. Fehér and V. Ayadi , Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction, Journ. Math. Phys. 51, 103511 (2010).

83. L. Fehér and  B.G. Pusztai, Derivations of the trigonometric BC(n) Sutherland model by quantum  Hamiltonian reduction,  Rev. Math. Phys. 22, 699-732 (2010).

82. V. Ayadi and L. Fehér,  On the superintegrability of the rational Ruijsenaars-Schneider model,   Phys. Lett. A 374,  1913–1916  (2010).

81. L. Fehér and  C. Klimcik, On the duality between the hyperbolic Sutherland and the rational Ruijsenaars-Schneider models,  J. Phys. A: Math. Theor. 42,  185202 (2009).

80. L. Fehér and  C. Klimcik, Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg reduction,  Lett. Math. Phys. 87, 125-138 (2009).

79.  L. Fehér and B.G. Pusztai, Twisted spin Sutherland models from quantum Hamiltonian reduction,  J. Phys. A: Math. Theor. 41, 194009  (2008).

78.  L. Fehér and B.G. Pusztai, On the self-adjointness of certain reduced Laplace-Beltrami operators, Rep. Math. Phys. 61, 163-170 (2008).
 
77.  L. Fehér and B.G. Pusztai, Hamiltonian reductions of free particles under polar actions of compact Lie groups,  Theor. Math. Phys. 155, 646-658 (2008).

76.  L. Fehér and B.G. Pusztai, A class of Calogero type reductions of free motion on a simple Lie group,  Lett. Math. Phys. 79, 263-277 (2007).

75.  L. Fehér and B.G. Pusztai,  Spin Calogero models associated with Riemannian symmetric spaces of negative curvature,  Nucl. Phys. B 751, 436-458 (2006).

74. L. Fehér and B.G. Pusztai, Spin Calogero models and dynamical r-matrices,  Bulg. J. Phys. 33,  261-272 (2006).

73. L. Fehér and B.G. Pusztai, Spin Calogero models obtained from dynamical r-matrices and geodesic motion,  Nucl. Phys. B 734, 304-325 (2006).

72.  L. Fehér, I. Tsutsui and T. Fülüp,  Inequivalent quantizations of the three-particle Calogero model constructed by separation of variables, Nucl. Phys. B 715,  713-757 (2005).

71. L Fehér, Poisson-Lie dynamical r-matrices from Dirac reduction,  Czech. Journ. Phys.,  54, 1265-1274 (2004).

70.  L. Fehér and I. Marshall,  The non-Abelian momentum map for Poisson-Lie symmetries on the chiral WZNW phase space, Int. Math. Res. Not., vol. 2004, no. 49,  2611-2636 (2004).

69. L.  Fehér and B.G. Pusztai, Explicit description of twisted Wakimoto realizations of affine Lie algebras,  Nucl. Phys. B 674, 509-532 (2003).

68. L. Fehér and I. Marshall, Stability analysis of some integrable Euler equations for SO(n), J. Nonlin. Math. Phys.  10, 304-317 (2003).

67.  L. Fehér,  Dynamical r-matrices and Poisson-Lie symmetries in the chiral WZNW model, JHEP Proceedings, PoS(unesp2002)012 (2002).

66. L. Fehér and A. Gábor, Interpretations and constructions of dynamical r-matrices, pp. 331-336, in:  Quantum Theory  and Symmetries,  eds. E. Kapuscik et al (World Scientific, 2002).

65. L. Fehér, Dynamical r-matrices and the chiral WZNW phase space, Phys. Atomic Nuclei 65, no. 6, 1023-1027 (2002).

64.  L. Fehér and I. Marshall,  On a Poisson-Lie analogue of the classical dynamical Yang-Baxter equation for self-dual Lie algebras,  Lett. Math. Phys. 62, 51-62 (2002).

63. L. Fehér and A. Gábor, Adler-Kostant-Symes systems as Lagrangian gauge theories, Phys. Lett. A 301, 58-64 (2002).

62. L. Fehér and B.G. Pusztai, Generalizations of Felder's elliptic dynamical r-matrices associated with twisted loop algebras of self-dual Lie algebras, Nucl. Phys. B 621, 622-642 (2002).

61. L. Fehér and B.G. Pusztai, Dynamical r-matrices on the affinizations of arbitrary self-dual Lie algebras, Czech. J. Phys. 51, 1318-1324 (2001).

60. B.G. Pusztai  and  L. Fehér, A note on a canonical dynamical r-matrix, J. Phys. A: Math. Gen. 34, 10949-10962 (2001).

59. L. Fehér, A. Gábor and B.G. Pusztai, On dynamical r-matrices obtained from Dirac reduction and their generalizations to affine Lie algebras, J. Phys. A: Math. Gen. 34, 7235-7248 (2001).

58. J. Balog, L. Fehér and L. Palla, The chiral WZNW phase space as a quasi-Poisson space, Phys. Lett. A 277, 107-114 (2000).

57. L. Fehér and B.G. Pusztai, The non-dynamical r-matrices of the degenerate Calogero-Moser models, J. Phys. A: Math. Gen. 33, 7739-7759 (2000).

56. J. Balog, L. Fehér and L. Palla, On the chiral WZNW phase space, exchange r-matrices and Poisson-Lie groupoids, pp. 1-19, in: CRM Proceedings and Lectures Notes, 26, eds. J. Harnad et al (AMS, 2000).

55. L. Fehér and B.G. Pusztai, On the classical r-matrix of the degenerate Calogero-Moser models, Czech. J. Phys. 50, 59-65 (2000).

54. L. Fehér and A. Gábor, A note on the appearance of self-dual Yang-Mills fields in integrable hierarchies, J. Nonlin. Math. Phys. 7, 423-432 (2000).

53. J. Balog, L. Fehér and L. Palla, Classical Wakimoto realizations of chiral WZNW Bloch waves, J. Phys. A: Math. Gen. 33, 945-956 (2000).

52. J. Balog, L. Fehér and L. Palla, Chiral extensions of the WZNW phase space, Poisson-Lie symmetries and groupoids, Nucl. Phys. B 568, 503-542 (2000).

51. J. Balog, L. Fehér and L. Palla,  The chiral WZNW phase space and its Poisson-Lie groupoid, Phys. Lett. B 463, 83-92 (1999).

50. L. Fehér, Wakimoto realizations of current and exchange algebras, Czech. J. Phys. 48, 1325-1330 (1998).

49. F. Delduc, L. Fehér and L. Gallot, Integrable hierarchies in the Drinfeld-Sokolov approach, pp. 251-253, in: Proc. of the 5th Wigner Symposium, eds. P. Kasperkovitz et al (World Scientific, 1998).

48. F. Delduc, L. Fehér and L. Gallot, Nonstandard Drinfeld-Sokolov reduction, J. Phys. A: Math. Gen. 31, 5545-5563 (1998).

47. W. Eholzer, L. Fehér and A. Honecker, Ghost systems: a vertex algebra point of view, Nucl. Phys. B 518, 669-688 (1998).

46. J. Balog, L. Fehér and L. Palla,  Coadjoint orbits of the Virasoro algebra and the global Liouville equation, Int. J. Mod. Phys. A 13, 315-362 (1998).

45. J. de Boer and L. Fehér, Wakimoto realizations of current algebras: an explicit construction, Commun. Math. Phys. 189, 759-793 (1997).

44. L. Fehér and I. Marshall, Extended matrix Gelfand-Dickey hierarchies: reduction to classical Lie algebras, J. Phys. A: Math. Gen. 30, 5815-5824 (1997).

43. L. Fehér and I. Tsutsui, Regularization of Toda lattices by Hamiltonian reduction, Jour. Geom. Phys. 21, 97-136 (1997).

42. L. Fehér and I. Marshall, Extensions of the matrix Gelfand-Dickey hierarchy from generalized Drinfeld-Sokolov reduction,  Commun. Math. Phys. 183, 423-461 (1997).

41. J. de Boer and L. Fehér, An explicit construction of Wakimoto realizations of current algebras, Mod. Phys. Lett. 11, 1999-2011 (1996).

40. L. Fehér, KdV type systems and W-algebras in the Drinfeld-Sokolov approach, in: Proc. of the Marseille 1995 Conference on W-Symmetry, hep-th/9510001.

39. L. Fehér and I. Tsutsui, Global aspects of the WZNW reduction to Toda theories, Prog. Theor. Phys. Supplement 118, 173-190 (1995).

38. L. Fehér and I. Tsutsui, Global aspects of the WZNW reduction to Liouville theory, pp. 483-486, in: Group Theoretical Methods in Physics, eds. A. Arima et al (World Scientific, 1995).

37. F. Delduc and L. Fehér, Regular conjugacy classes in the Weyl group and integrable hierarchies,  J. Phys. A: Math. Gen. 28, 5843-5882 (1995).

36. J. de Boer, L. Fehér and A. Honecker, A class of W-algebras with infinitely generated classical limit, Nucl. Phys. B 420, 409-445 (1994).

35. L. Fehér, L. O'Raifeartaigh, P. Ruelle and I. Tsutsui, On the completeness of the set of classical W-algebras obtained from DS reduction, Commun. Math. Phys. 162, 399-431 (1994).

34. L. Fehér, L. O'Raifeartaigh and I. Tsutsui, The vacuum preserving Lie algebra of a classical W-algebra, Phys. Lett. B 316, 275-281 (1993).

33. L. Fehér, J. Harnad and I. Marshall, Generalized Drinfeld-Sokolov reductions and KdV type hierarchies, Commun. Math. Phys. 154, 181-214 (1993).

32. L. Fehér, Generalized Drinfeld-Sokolov hierarchies and W-algebras, pp. 71-82, in: Quantum Groups, Integrable Models and Statistical Systems, eds. J. LeTourneux et al (World Scientific, 1993).

31. L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, On Hamiltonian reductions of the Wess-Zumino-Novikov-Witten theories, Phys. Rep. 222, 1-64 (1992).

30. L. Fehér and I. Tsutsui, On the Lagrangian realization of the WZNW reductions, Phys. Lett. B 294, 209-216 (1992).

29. L. Fehér, L. O'Raifeartaigh, P. Ruelle and I. Tsutsui, Rational vs polynomial character of $W_n^l$-algebras, Phys. Lett. B 283, 243-251 (1992).

28. L. Fehér, W-Algebras of generalized Toda theories, pp. 255-272, in: A.D. Sakharov Memorial Lectures in Physics, eds. L.V. Keldysh et al (Nova Science Publishers, 1992).

27. L. Fehér, L. O'Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, Generalized Toda theories and W-algebras associated with integral gradings, Ann. Phys. (N. Y.) 213, 1-20 (1992).

26. J. Balog, L. Dabrowski and L. Fehér, Nonstandard Quantum group in Toda and WZNW theories, pp. 279-293, in: Nonperturbative Methods in Low Dimensional Quantum Field Theories, eds. G. Domokos et al (World Scientific, 1991).

25. J. Balog, L. Dabrowski and L. Fehér, A new quantum deformation of SL(3), Phys. Lett. B 257, 74-78 (1991).

24. J. Balog, L. Dabrowski and L. Fehér, Classical r-matrix and exchange algebra in WZNW and Toda theories, Phys. Lett.  B 244, 227-234 (1990).

23. J. Balog, L. Fehér, L. O'Raifeartaigh, P. Forgács and A. Wipf, Kac-Moody realization of W-algebras, Phys. Lett. B 244, 435-441 (1990).

22. J. Balog, L. Fehér, L. O'Raifeartaigh, P. Forgács and A. Wipf, Toda theory and W-algebra from a gauged WZNW point of view, Ann. Phys. (N. Y.) 203, 76-136 (1990).

21. B. Cordani, L. Fehér and P.A. Horváthy, Kepler-type dynamical symmetries of long-range monopole interactions, J. Math. Phys. 31, 202-211 (1990).

20. P. Forgács, A. Wipf, J. Balog, L. Fehér and L. O'Raifeartaigh, Liouville and Toda theories as conformally reduced WZNW theories, Phys. Lett. B 227, 214-220 (1989).

19. L. Fehér, P.A. Horváthy and L. O'Raifeartaigh, Applications of chiral supersymmetry for spin fields in self-dual backgrounds, Int. J. Mod. Phys. A 4, 5277-5285 (1989).

18. M.G. Benedict, L. Fehér and Z. Horváth, Monopoles and instantons from Berry's phase, J. Math. Phys. 30, 1727-1231 (1989).

17. L. Fehér, P.A. Horváthy and L. O'Raifeartaigh, Separating the dyon system, Phys. Rev. D 40, 666-669 (1989).

16. M.G. Benedict and L. Fehér, Quantum jumps, geodesics, and the topological phase, Phys. Rev. D 39, 3194-3196 (1989).

15. L. Fehér and P. A. Horváthy, Particle in a self-dual monopole field, pp. 130-137, in: Differential Geometric Methods in Theoretical Physics, ed. A. I. Solomon (World Scientific, 1989).

14. L. Fehér, P. A. Horváthy and L. O'Raifeartaigh, Dynamical (super-) symmetries of a self-dual monopole, pp. 525-529, in: Symmetries in Science III, eds. B. Gruber et al (Plenum, 1989).

13. L. Fehér and P. A. Horváthy, Dynamical symmetry of the Kaluza-Klein monopole, pp. 399-417, in: Symmetries in Science III, eds. B. Gruber et al (Plenum, 1989).

12. L. Fehér, Dynamical symmetries of the Kaluza-Klein monopole, pp. 215-224, in: Relativity Today, ed. Z. Perjés (World Scientific, 1988)

11. L. Fehér and P.A. Horváthy, Non-relativistic scattering of a spin-1/2 particle off a self-dual monopole, Mod. Phys. Lett. A 3, 1451-1460 (1988).

10. B. Cordani, L. Fehér and P.A. Horváthy, Monopole scattering spectrum from geometric quantization, J. Phys. A: Math. Gen. 21, 2835-2837 (1988).

9. B. Cordani, L. Fehér and P.A. Horváthy, O(4,2) dynamical symmetry of the Kaluza-Klein monopole, Phys. Lett. B 201, 481-486 (1988).

8. L. Fehér, Conformal O(3,2) symmetry of the 2-dimensional inverse square potential, J. Phys. A: Math. Gen. 21, 375-378 (1988).

7. L. Fehér and  P.A. Horváthy, Dynamical symmetry of monopole scattering, Phys. Lett. B 183, 182-186 (1987).

6. L. Fehér, The O(3,1) symmetry problem of the charge-monopole interaction, J. Math. Phys.  28, 234-239 (1987).

5. L. Fehér, Dynamical O(4) symmetry in long range monopole-test particle and monopole-monopole interactions, pp. 15-38, in: Nonperturbative Methods in Quantum Field Theory, eds. Z. Horváth et al (World Scientific, 1987).

4. L. Fehér, Dynamical O(4) symmetry in the asymptotic field of the Prasad-Sommerfield monopole, J. Phys. A: Math. Gen. 19, 1259-1270 (1986).

3. L. Fehér, Classical motion of coloured test particles along geodesics of a Kaluza-Klein spacetime, Acta Phys. Hung. 59, 437-444 (1986).

2. L. Fehér, Quantum mechanical treatment of an isospinor scalar in Yang-Mills-Higgs monopole background, Acta Phys. Pol. B 16, 217-223 (1985).

1. L. Fehér, Bounded orbits for classical motion of test particles in the Prasad-Sommerfield monopole field, Acta Phys. Pol. B 15, 919-925 (1984).