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Integrable systems of Calogero (Moser, Sutherland, Ruijsenaars-Schneider,
Toda) type describe point “particles” moving on the line or on circle.

T hese systems are closely connected to soliton theory, e.g. to the KdV
and sine-Gordon models, as well as to Yang-Mills and Chern-Simons
field theories, and have links to important areas of mathematics.

They enjoy intriguing “duality relations’.

By definition, two integrable many-body systems are dual to each other
if action variables of system (i) are particle positions of system (ii), and
vice versa. Underlying phase spaces are symplectomorphic.

A special case of duality is self-duality, where the leading Hamiltonians
of the two systems have the same form.



The simplest self-dual system: Hca(gq,p) = Zpk + = Z ( )2
dk — g5

Symplectic reduction: Consider phase space T*iu(n) ~ Iu(n) X lu(n) = {(Q, P)} with
two families of ‘free’ Hamiltonians {tr (Q*)} and {tr(P*)}. Reduce by the adjoint
action of U(n) using the moment map constraint

QP = p(a) =iz By
ik
This yields the self-dual Calogero system (OP [76], KKS [78]):
gauge slice (i): Q = q :=diag(q1,...,qn), q1 > - > qn, With p:=diag(p1,...,pn)

—p—l-lxz

JFk

= Lca(q,p) Lax matrix, tr(dP AdQ) = Z dpi. N\ dqy,

qd; — 4k —1

gauge slice (ii): P =p :=diag(p1,...,Pn), P1> -+ > Pn, With g :=diag(q1,...,qn)

Q= —Lca(p,g) dual Lax matrix, tr(dP AdQ) = Z dgi A dpy.
k=1

The alternative gauge slices give two models of the reduced phase space. Their
natural symplectomorphism is the self-duality map.

For a recent application, see T.F. Gorbe: A simple proof of Sklyanin’s formula for
canonical spectral coordinates of the rational Calogero-Moser system, SIGMA 12
(2016), 027



Further self-dual systems

Hyperbolic Ruijsenaars-Schneider system:

n

thp—RS — Z(COSh pk) H

k=1 j#k

[1+

sinh?z F
sinh?(qx, — q;)

Its self-duality was shown by Ruijsenaars in 1988.

Compact(ified) trigonometric RS (Ill,) system, locally given by

mn
Hcompact—RS = Z (cospy)
k=1

\ £k

il [1 - sin®g ]

sin?(gy — q;)

Ruijsenaars (1995) studied the latter system assuming 0 < =z < 7/n.
He proved that (after going to the ‘center of mass frame') the naive
phase space (corresponding to ‘particles’ on the circle located at 24k
subject to qu 1 —qp >, Yk =1,...,n) can be compactified to CP"~1.
Then the flows are complete and the system is self-dual. He also noted
that similar compactification works for the elliptic RS system as well.

My talk 2012Q@CH: The self-duality map as a mapping class symplectomorphism
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Plan of the talk

I. Derivation of compact trigonometric RS systems by reduction.

II. Direct construction of the resulting systems of type (i).

ITI. Direct construction works in the elliptic case as well:

Hejliptic—RS = i (cospg) ﬁ [5(“3)2(@(“’) — (a5 — q’ﬂ))} ‘

k=1 \ 5k

IV. Conclusion, and remarks on related results.

Based on joint works with T. Kluck (I.) and T.F. Gorbe (II.-IIL.)



Reduction approach to compact trigonometric systems

For any reductive Lie group G, one can reduce the ‘phase space’

G x G = {(A, B)} by imposing constraint ABA™*B~! = g

using any constant pg and taking quotient by gauge transformations

(A,B) — (gAg 1, 9Bg™ 1), g€ G with gugg™! = po.

Reduced phase space is the moduli space of flat G-connections on the
torus with a hole, such that the holonomy around the hole is constrained
to the conjugacy class of ug. The matrices A and B are the holonomies
along the standard cycles on the torus. Their invariant functions
generate two Abelian Poisson algebras.

The mapping class group of the “one-holed torus” — SL(2,7Z) — acts
symplectically on the reduced phase space.

The idea to interpret trigonometric RS systems in terms of moduli
space is due to Gorsky-Nekrasov and Fock-Rosly (mid ninenties).

5



Self-dual compact forms of the trigonometric RS system

Consider G := SU(n) and equip the double G x G = {(A, B)} with the 2-form

w:= ((A"'dA ) dBB™') + (dAA™! ), B7'dB) — ((AB) *d(AB) /, (BA)"'d(BA))).

The 2-form, the moment map u: (A, B) — ABA-1B~1, and the action of G by com-
ponentwise conjugation makes G x G a quasi-Hamiltonian space (Alekseev-Malkin-
Meinrenken, 1998).

The reduced phase space P(uo) := u *(u0)/G,, is symplectic.

The class functions of GG, applied to either components A or B in the pair (A,B) €
G x G, descend to two Abelian Poisson algebras on P(uo).

Earlier with C. Klimcik, analyzed this quasi-Hamiltonian reduction taking

o = po(x) := diag (ezim, .., ed e_QI(”_l)x)
with 0 < =z < w/n. More recently with T. Kluck, studied general case 0 < x < 7.

First result: this construction always gives a self-dual integrable system on the com-
pact, connected, smooth reduced phase space P(ug(x)) of dimension 2(n — 1).

Second result: On a dense open submanifold of P(ug(x)) the “main Hamiltonian”
coming from R (tr (A)) takes the RS form of III, type:

n

Hcompact—rs = Z(COSpk) [1 —
k=1 £k

sin?x
sin?(qx — g;)

This describes n “particles” moving on the circle. Domain of “position variables” is
the same as domain of “action variables” and depends on value of z.



Two types of compact RS systems

The analysis requires finding the spectra of B for all (A, B) in the constraint surface
uw L (po(z)), where ABA 1B~ = pug(x). /2" 4 1 forallm=1,2,....n/

In principle, two qualitatively different types of cases can occur:
e Type (i): the constraint surface satisfies = '(uo(x)) C Greg X Greg.
e Type (ii): the relation p ! (uo(x)) C Greg X Greg does not hold.

The reduced phase space P(uo(x)) is naturally a Hamiltonian toric manifold if and
only if u=t(uo(x)) C Greg X Greg, i.€., in the type (i) cases. In other words, one obtains
(n — 1) globally smooth, independent action variables generating an effective torus
action.

Indeed, in the type (i) cases certain ‘“spectral functions”on G that are smooth on
Greg but only continuous at Gsjng descend to smooth action variables and position
variables when applied to A and B with (A, B) € u~*(po(x)).

In the type (ii) cases the particles can collide and the action variables become non-
differentiable at singular points, where the (n — 1) commuting smooth Hamiltonians
lose their independence.

Our main result: We found the complete classification of the parameter O < =z < 7
according to type (i) and type (ii) cases.



Classification of the coupling parameter

Main Theorem of [L.F.- T. Kluck]:
The type (i) cases are precisely those for which the coupling parameter O < x < 7
(subject to e?™™ #£ 1 for all m = 1,2,...,n) belongs to a punctured interval of the

form
e e AL

with integers ¢, d satisfying 1 <e¢,d<(n-—1), gcd(n,¢c) =1 and ed =1 mod n. In
these cases the reduced phase space P(uo(z)) is symplectomorphic to CP*~! endowed
with a multiple of the Fubini-Study symplectic structure.

e T he result was obtained by determining the possible spectra of the matrix B
satisfying ABA 'B~1 = po(x).

e In the type (i) cases we found that the “Delzant polytope” is a simplex.
e The existence of type (ii) cases was not anticipated.

e In the previously studied type (i) case |Ruijsenaars 95, van Diejen-Vinet 98,
Gorsky-Nekrasov 95, Feher-Klimcik 2012] ¢ =1 and x was restricted to (0,7/n).



Illustration of type (i) and type (ii) cases
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“Free” Hamiltonians on the double and their reductions

For any H € C°(G)%, let Hy and Ho be the invariant functions on D
given by H1(A,B) := H(A) and Hy(A,B) := H(B). Then {1} and
{Ho} form two Abelian Poisson algebras on D. One can easily write
down the corresponding quasi-Hamiltonian flows on D.

By reduction, one obtains two Abelian Poisson algebras on each re-
duced phase space P(ug):

C%:={H1|H e PR}, v :={H|HecC®(G)"}.

Abelian algebras are interchanged under ‘duality symplectomorphism’
(of order 4) Sp that descends from automorphism S, of the double,
Sp: (A B)— (B~1,BAB™1).

Consequence: The ‘configuration space’ A, described later (page 12)
is THE SAME as the range of the action variables.
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Basic ‘“spectral functions” on SU(n)

Simplex: A = {(51, nbnc) ERTL >0, j=1,.,n—1, Yle < 7r}

nxn matrices: Ay i=F_) B — flp, k=1,.,n-1

Any element of G = SU(n) is conjugate to §(¢) := exp(—QiZZ;ll &/\i) for unique
£ € A. Hence, we can define conjugation invariant functions =, on G by setting

“Spectral functions” =; are only continuous at Gsing, but restrictions to Greg belong
to C®(Greg)®. Greg is mapped onto interior of A by (Z1,...,=,-1).

Crucial fact: invariant functions a;(A, B) := =;(A) and By(A, B) := =,(B) generate
2m-periodic flows on the regular part of the double D =G x G.

Reduction applied to (a1,...,an-1) : D — A and (B1,...,08,-1) : D — A yields toric
moment maps on the reduced phase space P(ug) if P(up) is smooth, has dimension
Q(TL — 1) and M_l(MO) C Greg X Greg.

We found all cases when the above conditions hold.
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The “configuration space”

It is convenient to map R” ! onto the hyperplane
E:={ecR"| &+ 4+ & =n)that contains A={(cFE|&>0,V=1,...,n}.

Let §(¢) = gBg~! and guo(z)g~! = €21, 4+ (e2(—m)z _ 2ix)yyt For regular &, the
constraint ABA 1B~! = yo(xz) implies

sin(z) 1o e %6; — €l*6, _sin(x) i sin(ZZ:E . — )
sin(nx) ol d; — ¢ sin(nx) Pl sin(zgg;lg 1)
VEals
and the task is to find the ‘“‘configuration space” A,, provided by the closure of
A9 = {¢£ € A™9 | z(€,2) >0, £=1,...,n}.

L= 26(57 :B)

v =

Using periodic convention & = ¢4, (V5 € Z), we find that for
L << (c+ 1)5, (c=0,...,n—1)
n n
A, ={6€E| &+ Abpe1 <z, VU=1,... 0} {€E| &+ FEe >z, VE=1,...n}

Thus A, is intersection of two polyhedra. It is contained in the closed simplex A.
(If c=1 or c=n—1 then one polyhedron occurs, and it lies inside A.)

In type (i) cases A, does not reach the boundary of A. This happens when z is near
enough to w% for gcd(c,n) = 1. In these cases one of the two polyhedra is a simplex,

which is contained in the other polyhedron and inside A.

12



Preparation for local description of the reduced system

Pick any z for which e2im *= 1 forallm=1,2,...,n. Consider domain
A containing those regular ¢ for which zy(¢,z) >0 forall£=1,...,n.

Then take vp(§,x) = /zp(&,x), and using v = v(£,x) introduce the

matrix g := g.(£) having the elements

ViV
. e g e s g = §ay — I ] = _
gnn ‘= Vn, Jjn ‘= —Ggnj ‘= Vj, gjl ‘= 0j o’ Vi,l=1,...,n— 1.
Finally, with (e'%1,... el%n-1) € T"—1 prepare
0 = diag(e 101 l(01=02) (i(02—03) —  i(0n2—0n-1) cifh-1)

Then we have the unitary ‘local RS Lax matrix’

sin(nx) el? — g~z
sin(x) el%6;(£)6,(§)"1 —e
t =AT

Note that z matters only modulo = and Af = Al =

L0, 0)0 = ——v; (&, 2)ve(€, —2) ().
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Local Theorem. For any generic x, the set

{ (920071 £09(6,0)92(8), 92(8) 16(©)92()) | (6,6 € AT x T} € GG

defines a cross-section of the orbits of (G ) in the open submanifold

po(@
B=1(AT) N w1 (po(x)) of the constraint surface. The parametrization

by (§,ei9) S Aj;' x T"~1 induces Darboux coordinates on corresponding
submanifold of reduced phase space: we have w'°¢ = Z’Z;ll do, A d&;.

On this submanifold, which is dense in the full reduced phase space, the
Poisson commuting reduced Hamiltonians descending from the class
functions of A in (A4, B) € G xG become the class functions of £I°¢(¢, 9).
The reduction of the function R(tr (A)) provides the RS Hamiltonian

loc zn: j+ﬁ_1 sin? x
HIO%(¢,0) = Y cos(8; 0, 1) -
' j=1 k=j+1 Slnz(an:lj Em)

The a and B images of reduced phase space give closure of A;';' C A.

(Here we employed the conventions g =0, =0, &, = n7—&1—---—&u—1 and &gy = &k.)
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n

n
For interpretation, put & = €%, o, = e P,  qui1—aqr = &k, (H O = H Ok = 1)-
k=1 k=1

Then H!°(¢,p) = Z?:l COS(pj)\/Hk#j [1 — %] and, after a conjugation, the local
Lax matrix becomes
sin(nx) sin(x)

nte) Sinte — o 2@ DUE e

Li(q,p)je =

In the type (i) cases, fix integers 1 <c¢,d < (n—1) s.t. gcd(e,n) =1 and ed =1
modulo n. Then the parameter x can vary as

c 1 e CcT or CT e C n 1
—— — << — — <z — 1T o | .
n  nd n n n (n—dn
In the above two cases M :=cr —nx > 0 or M < O, respectively, and &£ € A, satisfies
Sgn(M)(£j++€j+c—l_x)Zoa ]:1,,’)?,
Thus, for M > 0 and M < 0, the ‘distances of the c-th neighbours’ are subject to

gji+c—q; = x and respectively to g+, —q; < =, V3.

Here, qx+n = qr + 7. The simplex A, lies in the interior of A.
15



Turning to the second part, we now embed the local phase space into CP" !,
For this, we introduce the mapping &: AT x T ! ™ (&) — (u1,...,un)
with the complex coordinates having the squared absolute values
uil> =sgn(M)(& + -+ Ejpe1 —2), J=1,...,n,
and arguments arg(u;) = sgn(M) Z};‘: Wiwbe, 3=1,...,n—1, arg(u,) = 0. We have
2 = {sgn(M)( i=3 Tiabe = @), f1<j<n-—p,
sgn(M) (Y1 Tjeék —a+7), ifn—p<j<n-—1

with an integer matrix 7' € SL(n — 1,7Z), and take W to be inverse-transpose of T.
(We determined T and T—! explicitly.) The image of & lies in

S|2]\Z|_l = {(u17° c 7un) e C" | |’U,]_|2 —|— ce _|_ |un|2 — |M|},

ﬁ\’}rl/U(l), with projection my: Sﬁ(}rl — CP™ 1.

As E* (i D i dij A duj) = S 71 d6y A d€j, holds, we obtained symplectic embedding

which engenders CP" 1 = §

mar 0 & T AF x T 1 — CP !

with respect to w'°¢ = Z?;i do Ndg; and the re-scaled Fubini-Study form |M|wgs. The
image is the dense, open submanifold where no homogeneous coordinate can vanish.
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Result about direct construction of trigonometric RS systems on CP"!

Theorem. Define the diagonal unitary matrix D = diag(D1,...,D,_1,1) with

J_exp( ijk0k> j=1,...,n—1.

Then, in every type (i) case, there exists a smooth function L* : CP" ! — SU(n) that
satisfies the following relation:

(L om0 €)(€,0) = D(O) ' LY°(€,0)D(0), V(& €”) € AT x T,
which means that L? is an extension of the local Lax matrix D~'L!°°D to CP" 1.

Corollary. The symmetric functions of the global Lax matrix L* define an integrable
system on CP""!, whose main Hamiltonian extends the local RS Hamiltonian H!°¢.

We have this extension in explicit form as well. Next I sketch the crux of the proof,
and then give the analogous result in the elliptic case.

The direct construction was inspired by Ruijsenaars’ work [RIMS 95], which dealt
with the case 0 < ¢z < w/n, and his remarks on the corresponding elliptic case.
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To explain the crux, first note that C>*°(CP* 1) = C”(Sﬁ(}l‘l)u(l). Thus the squared

absolute values |u;|? give rise to smooth functions on CP" !, and the same is true for
the components &, which be written as affine combinations of the |u;|?.

Consider ‘building block’ v;(&,x) of local Lax matrix. We have v;(&,x) = |u;|w;(&, x),
where w;(§, x) is the function

N[~

sin(|u;|?) sgn(M) sin(x) jﬁl Sin(ZZZjl & — )
i sin(na) sin(z‘,’;?_l ) m=it1 sin(Z?;jl )
(m#j+p)

The point to notice is that w; extends to a smooth function on cpr 1, Inspecting all
building blocks, we find that the local Lax matrix exhibits the following structure:

’I.Uj(g,ﬂi‘) —

(N2, (8), f1<j<n—p L=j+p
L9%(¢,0), = 4 "a-t-n (&) Tropsgsn t=0 ),
, |uj||u£—p+n|/\§,£(€)7 if 1 S J S n, 1 S 14 S p, 14 7'_é J — (n _p)7
il [we—p| AT ,(£), ifp<t<n, £LF#j+p

where the /\;’?5(5) extend to smooth functions on CP"~!. The absolute values are not

smooth functions (at the origin), but they appear quadratically. Everything will be
fine if we can “engineer” replacements like |uj||ue—p| — uwjur—, Since on the r.h.s we

have a U(1) invariant smooth function on Sﬁ@,‘l. This is precisely what is achieved

by conjugating L'°¢(¢,0) = L'°¢(¢,0)0(0) by the phase matrix D(0).
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Elliptic preparations

Let w,w’ stand for the half-periods of the Weierstrass elliptic function g,

o0

o(z;w,w) =272+ Z ((z — Q) 2 — Q;ﬁm,),

(m,m’)#(0,0)

with Q. = 2mw + 2m/w’. We choose w,—iw’ € (0,00), which ensures that g is
positive on the real axis. Next, introduce the ‘s-function” by the formula

sin®(az) )

B sin?(2amw’)

s(z;w,w') = a tsin(az) ﬁ (1
m=1

with a = 7/(2w). An important identity connecting p and s is

s(z+y)s(z—y)
s2(z) s?(y)

The s-function is odd, satisfies s(w/a—z) = s(z), has simple zeros at Q2 ;, m,m’ € Z
and enjoys the scaling property

= p(y) — p(z).

s(tz; tw, tw') = ts(z; w,w'),

which permits to work with a =1 (w = =w/2). In the trigonometric limit,

1 1
lim zim/2,W) = — —, lim s(z;7/2,w) = sin(z).
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Type (i) compact forms of the elliptic RS system

Since s(z) and sin(z) have matching properties, the following variant Ruijsenaars’
[1986] elliptic Lax matrix is well-behaved on the type (i) local phase space A} x T 1:

s(nz)s(z)s(gj —qe+ )
s(z) s(A)s(g; — g+ )

where A € C\ {Qmm : m,m' € Z} is a spectral parameter, v,(&, +x) = +/z,(&, £x) with

LI(€,010) 0 =

vi (&, x)ve(§, —)e(0)e,

z(§,z) = ne) 11 TS le s(nz) = s(gm — )

s(a:) ﬁﬁls@z‘;;sk—x) s(z) H S(qm — q¢ — )
m#é

Theorem. There exists a smooth, spectral parameter dependent elliptic Lax matrix
L*(-|A) on CP" ! which is an extension of L!°¢(¢,0|)\) since it satisfies

L7 (w0 E(€,0)|N) = D(0) TLR°(&,0|0)D(0), V(&%) € AF x T,

where D and & omyy : Ar x T"1 — CP" ! are the same as in the trigonometric case.

We have sgn(s(nz))R(tr L'°°(¢,0)) = H°°(¢,0) with the elliptic RS (IVp) Hamiltonian:

n J+n—1
HPN(E,0) =Y cos(0;— 1), | [] (s)(p(2) — o(Sis) &),
=1 m=j+1
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Conclusion
My research is focused on applications of Hamiltonian reduction. This
links integrable systems to a host of interesting subjects. 1 explored

several many-body systems and their duality relations in this framework.

Projects for the near future:

(I. Marshall)
e Quantization of new compact RS systems (T.F. Gorbe)

Main open problems:
e How to deal with (duality for) ‘relativistic Toda'?

e How to obtain the hyperbolic RS system by reduction?

REFS: L.F. and T.J. Kluck: New compact forms of the trigonometric RS system,
Nucl. Phys. B882 (2014) 97-127

L.F. and T.F. Gorbe: Trigonometric and elliptic RS systems on the complex projec-
tive space, arXiv:1605.09736
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