Ruijsenaars duality in the framework of symplectic reduction

László Fehér, KFKI RMKI, Budapest and University of Szeged Talk based on joint work with Ctirad Klimčík, IML, Marseille References: arXiv:0809.1509, 0901.1983, 0906.4198, 1005.4531 [math-ph]

- Two integrable many-body systems are dual to each other if the action variables of system (i) are the particle positions of system (ii), and vice versa. Underlying phase spaces are symplectomorphic.
- First example is the self-duality of the rational Calogero system. Interpreted in terms of symplectic reduction by Kazhdan, Kostant and Sternberg (1978).
- Duality was discovered and explored by Ruijsenaars (1988-95) in his direct construction of action-angle variables for Calogero-Sutherland type systems and their 'relativistic' deformations.

The simplest example

Rational Calogero system:
$$H_{\text{Cal}}(q,p) = \frac{1}{2} \sum_{k=1}^{n} p_k^2 + \frac{1}{2} \sum_{j \neq k} \frac{x^2}{(q_k - q_j)^2}$$

Symplectic reduction: Consider phase space $T^*iu(n) \simeq iu(n) \times iu(n) := \{(Q,P)\}$ with two families of 'free' Hamiltonians $\{\operatorname{tr}(Q^k)\}$ and $\{\operatorname{tr}(P^k)\}$. Reduce by the adjoint action of U(n) using the moment map constraint

$$[Q, P] = \mu(x) := ix \sum_{j \neq k} E_{j,k}$$

This yields the self-dual Calogero system (OP [76], KKS [78]):

gauge slice (i):
$$Q=q:=\operatorname{diag}(q_1,\ldots,q_n), \quad q_1>\cdots>q_n$$
, with $p:=\operatorname{diag}(p_1,\ldots,p_n)$

$$P = p + \mathrm{i} x \sum_{j \neq k} \frac{E_{jk}}{q_j - q_k} \equiv L_{\mathsf{Cal}}(q, p) \quad \mathsf{Lax \ matrix}, \quad \mathsf{tr} \left(dP \wedge dQ \right) = \sum_{k=1}^n dp_k \wedge dq_k$$

gauge slice (ii): $P = \hat{p} := \operatorname{diag}(\hat{p}_1, \dots, \hat{p}_n), \quad \hat{p}_1 > \dots > \hat{p}_n, \text{ with } \hat{q} := \operatorname{diag}(\hat{q}_1, \dots, \hat{q}_n)$

$$Q = -L_{\mathsf{Cal}}(\hat{p}, \hat{q})$$
 dual Lax matrix, $\operatorname{tr}(dP \wedge dQ) = \sum_{k=1}^{n} d\hat{q}_k \wedge d\hat{p}_k$.

The alternative gauge slices give two models of the reduced phase space. Their natural symplectomorphism is the 'action-angle map' for the two Calogero systems: alias the duality map. Ruijsenaars hinted at analogous picture in general.

A 'dual pair' of integrable many-body systems

Hyperbolic Sutherland system (1971):

$$H_{\text{hyp-Suth}}(q,p) = \frac{1}{2} \sum_{k=1}^{n} p_k^2 + \frac{x^2}{2} \sum_{j \neq k} \frac{1}{\sinh^2(q_j - q_k)}$$

Basic Poisson brackets: $\{q_i, p_j\} = \delta_{i,j}$, x: non-zero, real constant.

Rational Ruijsenaars-Schneider system (1986):

$$H_{\mathsf{rat-RS}}(\widehat{p},\widehat{q}) = \sum_{k=1}^{n} \cosh(\widehat{q}_k) \prod_{j \neq k} \left[1 + \frac{x^2}{(\widehat{p}_k - \widehat{p}_j)^2} \right]^{\frac{1}{2}}$$

Poisson brackets: $\{\hat{p}_i, \hat{q}_j\} = \delta_{i,j}$ (\hat{p}_i are RS 'particle positions').

Systems describe n 'particles' moving on the line, and are integrable.

Ruijsenaars (1988) constructed 'duality symplectomorphism' (actionangle map) between underlying phase spaces.

Local description of two other dual pairs

Standard trigonometric Ruijsenaars-Schneider [86] system:

$$H_{\text{trigo-RS}} = \sum_{k=1}^{n} (\cosh p_k) \prod_{j \neq k} \left[1 + \frac{\sinh^2 x}{\sin^2 (q_k - q_j)} \right]^{\frac{1}{2}}$$

It is a relativistic generalization (here with c=1) of

$$H_{\text{trigo-Suth}} = \frac{1}{2} \sum_{k=1}^{n} p_k^2 + \frac{x^2}{2} \sum_{j \neq k} \frac{1}{\sin^2(q_k - q_j)}$$

The dual systems (Ruijsenaars [88,95]):

$$\widehat{H}_{\text{trigo-RS}} = \sum_{k=1}^{n} (\cos \widehat{q}_k) \prod_{j \neq k} \left[1 - \frac{\sinh^2 x}{\sinh^2 (\widehat{p}_k - \widehat{p}_j)} \right]^{\frac{1}{2}}$$

$$\widetilde{H}_{\mathsf{rat-RS}} = \sum_{k=1}^{n} (\cos \widehat{q}_k) \prod_{j \neq k} \left[1 - \frac{x^2}{(\widehat{p}_k - \widehat{p}_j)^2} \right]^{\frac{1}{2}}$$

 $H_{\text{trigo-RS}}$, $\widehat{H}_{\text{trigo-RS}}$: different real forms of complex trigo RS.

Further self-dual systems

Compactified trigonometric RS (III_b) system, locally given by

$$H_{\text{compact-RS}} = \sum_{k=1}^{n} (\cos p_k) \prod_{j \neq k} \left[1 - \frac{\sin^2 x}{\sin^2 (q_k - q_j)} \right]^{\frac{1}{2}}$$

Hyperbolic Ruijsenaars-Schneider system:

$$H_{\text{hyp-RS}} = \sum_{k=1}^{n} (\cosh p_k) \prod_{j \neq k} \left[1 + \frac{\sinh^2 x}{\sinh^2 (q_k - q_j)} \right]^{\frac{1}{2}}$$

- Our purpose is to derive all of Ruijsenaars' dualities by reductions of suitable finite-dimensional phase spaces. Then study new cases: systems with two types of particles, BC(n) systems etc.
- Today, I describe the non-self-dual cases of the duality.

Duality from symplectic reduction: the basic idea

Start with 'big phase space', of group theoretic origin, equipped with *two* commuting families of 'canonical free Hamiltonians'.

Apply suitable *single* symplectic reduction to the big phase space and construct *two* 'natural' models of the reduced phase space.

The two families of 'free' Hamiltonians turn into interesting **many-body Hamiltonians** and **particle-position variables** in terms of both models. Their rôle is *interchanged* in the two models.

The natural symplectomorphism between the two models of the reduced phase space yields the 'duality symplectomorphism'.

Motivated by KKS [78], the above 'scenario' was described by Gorsky and Nekrasov in the nineties (see e.g. Fock-Gorsky-Nekrasov-Roubtsov [2000]). They focused on local questions working mostly with infinite-dimensional phase spaces and in a complex holomorphic setting. Global structure of real phase spaces is non-trivial.

Duality between hyperbolic Sutherland and rational RS

Take real Lie algebra $gl(n,\mathbb{C})$ with bilinear form $\langle X,Y\rangle:=\Re \operatorname{tr}(XY)$, and minimal coadjoint orbit of U(n): $\mathcal{O}_x:=\{\xi=\operatorname{i} x(\mathbf{1}_n-vv^\dagger)\,|\,v\in\mathbb{C}^n,\,|v|^2=n\}$. Start with the 'big phase space' (M,Ω_M) :

$$M := T^*GL(n, \mathbb{C}) \times \mathcal{O}_x \simeq (GL(n, \mathbb{C}) \times gl(n, \mathbb{C})) \times \mathcal{O}_x = \{(g, J^R, \xi)\}.$$

Introduce matrix functions $\mathcal L$ and $\widehat{\mathcal L}$ on M by

$$\mathcal{L}(g, J^R, \xi) := J^R$$
 and $\widehat{\mathcal{L}}(g, J^R, \xi) := gg^{\dagger}$.

These 'unreduced Lax matrices' generate 'canonical free Hamiltonians'

$$H_k := \frac{1}{k} \Re \operatorname{tr}(\mathcal{L}^k), \qquad \widehat{H}_{\pm k} := \pm \frac{1}{2k} \operatorname{tr}(\widehat{\mathcal{L}}^k), \qquad k = 1, \dots, n$$

We shall reduce by symmetry group

$$K := U(n) \times U(n),$$

where $(\eta_L, \eta_R) \in K$ acts on M by symplectomorphism

$$\Psi_{\eta_L,\eta_R}: (g,J^R,\xi) \mapsto (\eta_L g \eta_R^{-1}, \eta_R J^R \eta_R^{-1}, \eta_L \xi \eta_L^{-1})$$

generated by moment map

$$\Phi: M \to u(n) \oplus u(n), \qquad \Phi(g, J^R, \xi) = ((gJ^Rg^{-1})_{u(n)} + \xi, -J^R_{u(n)})$$

Use **two** models of **the** reduced phase space: $M_{\text{red}} := M//_0 K \equiv \Phi^{-1}(0)/K$.

First model: the Sutherland gauge slice S

Consider the Weyl chamber: $\mathcal{C}:=\{q\in\mathbb{R}^n\,|\,q_1>q_2>\cdots>q_n\}$. $T^*\mathcal{C}\simeq\mathcal{C}\times\mathbb{R}^n=\{(q,p)\}$ has Darboux form $\Omega_{T^*\mathcal{C}}=\sum_k dp_k\wedge dq_k$. Define Hermitian matrix function L on $T^*\mathcal{C}$ by

$$L(q,p)_{jk} := p_j \delta_{jk} - \mathsf{i}(1-\delta_{jk}) \frac{x}{\mathsf{sinh}(q_j - q_k)}$$

L is the standard Lax matrix of the hyperbolic Sutherland model. Recall that $\mu(x) \in \mathcal{O}_{-x} \subset u(n)$ is given by $\mu(x)_{jj} = 0$ and $\mu(x)_{jk} = ix$ for all $j \neq k$. Identify any $q \in \mathbb{R}^n$ with $q \simeq \operatorname{diag}(q_1, \ldots, q_n)$.

Theorem 1. The manifold S defined by

$$S := \{ (e^q, L(q, p), -\mu(x)) | (q, p) \in \mathcal{C} \times \mathbb{R}^n \}$$

is a global cross section of the K-orbits in $\Phi^{-1}(0) \subset M$.

If $\iota_S: S \to M$ is the injection, then in terms of the coordinates q, p on S one has $\iota_S^*(\Omega_M) = \sum_k dp_k \wedge dq_k$. Thus, the symplectic manifold

$$(S, \sum_{k} dp_k \wedge dq_k) \simeq (T^*\mathcal{C}, \Omega_{T^*\mathcal{C}})$$

is a model of the reduced phase space.

Goes back to Olshanetsky-Perelomov [76], Kazhdan-Kostant-Sternberg [78].

Next, denote the elements of $T^*\mathcal{C} = \mathcal{C} \times \mathbb{R}^n$ as pairs (\hat{p}, \hat{q}) .

Define (Hermitian, positive definite) matrix-function \hat{L} on $T^*\mathcal{C}$ by

$$\widehat{L}(\widehat{p},\widehat{q})_{jk} = u_j(\widehat{p},\widehat{q}) \left[\frac{\mathrm{i}x}{\mathrm{i}x + (\widehat{p}_j - \widehat{p}_k)} \right] u_k(\widehat{p},\widehat{q}),$$

$$u_j(\hat{p}, \hat{q}) := e^{-\hat{q}_j/2} \prod_{m \neq j} \left[1 + \frac{x^2}{(\hat{p}_j - \hat{p}_m)^2} \right]^{\frac{1}{4}}, \quad j = 1, \dots, n.$$

Then define \mathbb{R}^n -valued function

$$v(\hat{p}, \hat{q}) := \hat{L}(\hat{p}, \hat{q})^{-\frac{1}{2}} u(\hat{p}, \hat{q})$$
 with $u = (u_1, \dots, u_n)^T$.

Finally, introduce the \mathcal{O}_x -valued function

$$\xi(\hat{p},\hat{q}) := \xi(v(\hat{p},\hat{q})) = ix(\mathbf{1}_n - v(\hat{p},\hat{q})v(\hat{p},\hat{q})^{\dagger})$$

 \widehat{L} is the standard Lax matrix of the rational Ruijsenaars-Schneider system.

Second model: the Ruijsenaars gauge slice \widehat{S}

Theorem 2. The manifold \hat{S} defined by

$$\widehat{S} := \{ (\widehat{L}(\widehat{p}, \widehat{q})^{\frac{1}{2}}, 2\widehat{p}, \xi(\widehat{p}, \widehat{q})) \mid (\widehat{p}, \widehat{q}) \in \mathcal{C} \times \mathbb{R}^n \}$$

is a **global cross section** of the K-orbits in $\Phi^{-1}(0) \subset M$. If $\iota_{\widehat{S}}: \widehat{S} \to M$ is the injection, then in terms of the coordinates \widehat{p} , \widehat{q} on \widehat{S} one has $\iota_{\widehat{S}}^*(\Omega_M) = \sum_k d\widehat{q}_k \wedge d\widehat{p}_k$. Therefore, the symplectic manifold

$$(\widehat{S}, \sum_{k} d\widehat{q}_{k} \wedge d\widehat{p}_{k}) \simeq (T^{*}\mathcal{C}, \Omega_{T^{*}\mathcal{C}})$$

is a model of the reduced phase space.

- Theorem 2 is our main result in arXiv:0901.1983.
- At an intermediate stage of the reduction we reach $T^*(GL(n,\mathbb{C})/U(n))$, with Riemannian symmetric space $G(n,\mathbb{C})/U(n)$. We could have started here.

Consequences

Since S and \hat{S} are two models of the reduced phase space M_{red} , there exists a natural symplectomorphism between the two models:

$$(S, \sum_{k} dp_k \wedge dq_k) \equiv (M//_0 K, \Omega_{\text{red}}) \equiv (\widehat{S}, \sum_{k} d\widehat{q}_k \wedge d\widehat{p}_k).$$

The 'free' Hamiltonians H_j and $\hat{H}_{\pm k}$ descend to integrable reduced Hamiltonians $H_j^{\rm red}$ and $\hat{H}_{\pm k}^{\rm red}$ on $M_{\rm red}$.

The reduced Hamiltonians take following form in terms of the 'gauge slices' $(S, \sum_k dp_k \wedge dq_k)$ and $(\widehat{S}, \sum_k d\widehat{q}_k \wedge d\widehat{p}_k)$:

on
$$S$$
: $H_j^{\text{red}} = \frac{1}{j} \text{tr}(L^j), \qquad \hat{H}_{\pm k}^{\text{red}} = \pm \frac{1}{2k} \sum_{i=1}^n (e^{2q_i})^{\pm k}$

on
$$\hat{S}$$
: $H_j^{\text{red}} = \frac{1}{j} \sum_{i=1}^n (2\hat{p}_i)^j$, $\hat{H}_{\pm k}^{\text{red}} = \pm \frac{1}{2k} \text{tr}(\hat{L}^{\pm k})$

The natural symplectomorphism is Ruijsenaars' duality map.

Trigonometric Sutherland – following KKS [78]

Consider cotangent bundle $T^*U(n)$ of U(n) (in right-trivialization):

$$T^*U(n) = \{(g, J_L) \mid g \in U(n), J_L \in u(n)^* \simeq u(n)\}$$

It carries the natural symplectic form

$$\Omega(g, J_L) = d \operatorname{tr} (J_L dg g^{-1})$$

and two sets of 'canonical free Hamiltonians' $\{h_k\}$ and $\{\widehat{h}_{\pm k}\}$

$$h_k(g, J_L) := \text{tr}(iJ_L)^k, \quad \hat{h}_k(g, J_L) := \Re \text{tr}(g^k), \quad \hat{h}_{-k}(g, J_L) := \Im \text{tr}(g^k)$$

- One can write down their Hamiltonian flows explicitly.
- They are invariant under the adjoint action of U(n) on $T^*U(n)$:

$$\eta \triangleright (g, J_L) = (\eta g \eta^{-1}, \eta J_L \eta^{-1}) \qquad \forall \eta \in U(n),$$

generated by the moment map $J: T^*U(n) \to u(n)^*$ given by

$$J(g, J_L) = J_L + J_R$$
 with $J_R(g, J_L) := -g^{-1}J_Lg$.

J is sum of moment maps generating left/right multiplication.

KKS [78] found that the moment map constraint $J=\mu(x)$ produces the trigonometric Sutherland system from the Hamiltonian system describing the free particle on U(n): $(T^*U(n), \Omega, h_2)$. The Hamiltonians $\{h_k\}$ give action variables of Sutherland system (and $\{\hat{h}_{\pm k}\}$ become in effect the Sutherland particle-positions).

It can be shown that using another model of the reduced phase space $\{\hat{h}_{\pm k}\}$ yield the commuting Hamiltonians of the Ruijsenaars dual of the Sutherland system (and $\{h_k\}$ become in effect the dual particle positions).

Recently in 1005.4531 [math-ph] (V. Ayadi and L.F.: Trigonometric Sutherland systems and their Ruijsenaars duals from symplectic reduction), we considered covering homomorphisms

$$G_2 := \mathbb{R} \times SU(n) \longrightarrow G_1 := U(1) \times SU(n) \longrightarrow G := U(n)$$

and 'KKS reductions' of the 3 cotangent bundles by the effective symmetry group

$$\bar{G} := G/\mathbb{Z}_G \simeq G_1/\mathbb{Z}_{G_1} \simeq G_2/\mathbb{Z}_{G_2}.$$

This 'explained' the web of dualities and coverings due to Ruijsenaars [95]:

$$T^*\mathbb{R} imes T^*SQ(n) \stackrel{\mathsf{id}_2 imes \mathcal{R}_0}{\longrightarrow} T^*\mathbb{R} imes \mathbb{C}^{n-1}$$
 $\downarrow^{\psi_2^{\mathrm{I}}} \downarrow^{\psi_2^{\mathrm{II}}}$
 $T^*U(1) imes T^*SQ(n) \stackrel{\mathsf{id}_1 imes \mathcal{R}_0}{\longrightarrow} T^*U(1) imes \mathbb{C}^{n-1}$
 $\downarrow^{\psi_1^{\mathrm{II}}} \downarrow^{\psi_1^{\mathrm{II}}}$
 $P = T^*Q(n) \stackrel{\mathcal{R}}{\longrightarrow} \widehat{P}_c = \mathbb{C}^{n-1} imes \mathbb{C}^{ imes}$

 $Q(n) = \mathbb{T}_n^0/S_n$ is the configuration space of n indistinguishable non-colliding point particles moving on the circle and SQ(n) belongs to the relative motion of n distinguishable particles. On the right-side the corresponding completed dual phase spaces appear and the vertical maps are coverings.

As our final example, we deal with the standard trigo RS system, whose phase space is $P:=T^*Q(n)$. Here, $Q(n):=\mathbb{T}_n^0/S_n$ with \mathbb{T}_n^0 being the regular part of the maximal torus $\mathbb{T}_n < U(n)$. The corresponding Lax matrix L and symplectic form ω are:

$$L_{jk}(q,p) = \frac{e^{p_k} \sinh(-x)}{\sinh(\mathrm{i}q_j - \mathrm{i}q_k - x)} \prod_{m \neq j} \left[1 + \frac{\sinh^2 x}{\sin^2(q_j - q_m)} \right]^{\frac{1}{4}} \prod_{m \neq k} \left[1 + \frac{\sinh^2 x}{\sin^2(q_k - q_m)} \right]^{\frac{1}{4}}$$

$$\omega = \sum_k dp_k \wedge dq_k, \qquad p_k \in \mathbb{R}, \qquad 0 \le q_k < \pi, \quad q_1 > q_2 > \dots > q_n$$

The dual system can be *locally* characterized by

$$\widehat{L}_{jk}(e^{\mathrm{i}\widehat{q}},\widehat{p}) = \frac{e^{\mathrm{i}\widehat{q}_k}\sinh(-x)}{\sinh(\widehat{p}_j - \widehat{p}_k - x)} \prod_{m \neq j} \left[1 - \frac{\sinh^2 x}{\sinh^2(\widehat{p}_j - \widehat{p}_m)} \right]^{\frac{1}{4}} \prod_{m \neq k} \left[1 - \frac{\sinh^2 x}{\sinh^2(\widehat{p}_k - \widehat{p}_m)} \right]^{\frac{1}{4}}$$

 $\widehat{p} = \operatorname{diag}(\widehat{p}_1, \dots, \widehat{p}_n) \in \mathfrak{C}_x := \{\widehat{p} \mid \widehat{p}_j - \widehat{p}_{j+1} > |x|, \quad j = 1, \dots, (n-1)\}$ $e^{i\widehat{q}} \in \mathbb{T}_n$ with $\widehat{q} = \operatorname{diag}(\widehat{q}_1, \dots, \widehat{q}_n)$. Dual phase space $\widehat{P} = \mathbb{T}_n \times \mathfrak{C}_x$ is open submanifold of cotangent bundle of \mathbb{T}_n , with $\widehat{\omega} = d\widehat{p}_k \wedge d\widehat{q}_k$.

- The commuting flows associated with \hat{L} are **not** complete on \hat{P} .
- \hat{P} is symplectomorpic **(only)** to a dense, open submanifold of P. Hence \hat{P} needs to be extended, as performed by Ruijsenaars [95].

Poisson-Lie analogue of Kazhdan-Kostant-Sternberg reduction

According to Semenov-Tian-Shansky [85] and Lu-Weinstein [90]:

• P-L analogue of $T^*U(n)$ is Heisenberg double of Poisson U(n).

The Heisenberg double of U(n) is the *real* manifold $GL(n,\mathbb{C})$.

Every $K \in GL(n, \mathbb{C})$ admits two Iwasawa decompositions:

$$K=b_Lg_R^{-1}$$
 and $K=g_Lb_R^{-1}$ with $g_{L,R}\in U(n),\ b_{L,R}\in B$

B: group of upper triangular matrices with positive diagonal entries

Define maps
$$\Lambda_{L,R}:GL(n,\mathbb{C})\to B$$
 and $\Xi_{L,R}:GL(n,\mathbb{C})\to U(n)$
$$\Lambda_{L,R}(K):=b_{L,R} \quad \text{and} \quad \Xi_{L,R}(K):=g_{L,R}$$

 $GL(n,\mathbb{C})$ has natural symplectic form (Alekseev-Malkin [94])

$$\omega_{+} = \frac{1}{2} \operatorname{Str} \left(d\Lambda_{L} \Lambda_{L}^{-1} \wedge d\Xi_{L} \Xi_{L}^{-1} \right) + \frac{1}{2} \operatorname{Str} \left(d\Lambda_{R} \Lambda_{R}^{-1} \wedge d\Xi_{R} \Xi_{R}^{-1} \right)$$

Commuting Hamiltonians from dual P-L groups

Iwasawa maps $\Xi_{L,R}:GL(n,\mathbb{C})\to U(n)$ and $\Lambda_{L,R}:GL(n,\mathbb{C})\to B$ are **Poisson maps** if U(n) and B are equipped with their standard Poisson structures. In fact, the Poisson bracket $\{\ ,\ \}_+$ defined by ω_+ closes on

$$\equiv_{L,R}^* C^{\infty}(U(n))$$
 and on $\Lambda_{L,R}^* C^{\infty}(B)$

Induced Poisson bracket on U(n) is standard Sklyanin bracket [defined by Drinfeld-Jimbo r-matrix, $R^i \in \text{End}(u(n))$, $R^i(X) = \pi_{u(n)}(-iX)$]

 $C^{\infty}(U(n))^{U(n)}$: the adjoint (conjugation) invariant functions

 $C^{\infty}(B)^c \equiv C^{\infty}(B)^{U(n)}$: the center of the Poisson bracket on $C^{\infty}(B)$ provided by the dressing invariants

$$\Lambda_L^* C^{\infty}(B)^c = \Lambda_R^* C^{\infty}(B)^c$$
 and $\Xi_R^* C^{\infty}(U(n))^{U(n)}$

form **Abelian subalgebras** in $C^{\infty}(GL(n,\mathbb{C}))$ w.r.t. $\{\ ,\ \}_{+}$

The 'canonical free flows'

ullet First, flow of Hamiltonian $H=f\circ \Lambda_R$ with $f\in \mathbf{C}^\infty(\mathbf{B})^\mathbf{c}$ is

$$K(t) = g_L(t)b_R^{-1}(t) = g_L(0) \exp\left[-td^R f(b_R(0))\right] b_R^{-1}(0)$$

In other words, $b_R(t)=b_R(0)$ and $g_L(t)=g_L(0)\exp\left[-td^Rf(b_R(0))\right]$ Equivalently, $b_L(t)=b_L(0)$ and $g_R(t)=\exp\left[-td^Lf(b_L(0))\right]g_R(0)$

ullet Second, the flow of $\widehat{H}=\phi\circ\Xi_R$ with $\phi\in\mathbf{C}^\infty(\mathbf{U(n)})^{\mathbf{U(n)}}$ reads

$$g_R(t) = \gamma(t)g_R(0)\gamma(t)^{-1}, \qquad b_L(t) = b_L(0)\beta(t)$$

with $\gamma(t) \in U(n)$, $\beta(t) \in B$ defined by $e^{it \mathbf{D}\phi(g_R(0))} = \beta(t)\gamma(t)$. Also

$$K(t)K^{\dagger}(t) = b_L(t)b_L(t)^{\dagger} = b_L(0)e^{2itD\phi(g_R(0))}b_L(0)^{\dagger}$$

Solutions are obtained by Gram-Schmidt orthogonalization.

Quasi-adjoint symmetry

Following Lu [90]:

Poisson map from phase space into P-L group B is called (equivariant) P-L moment map. Every such map generates infinitesimal Poisson action of U(n)

 $\Lambda_{L,R}: GL(n,\mathbb{C}) \to B$ moment maps generating left/right multiplications by U(n). The product $\Lambda := \Lambda_L \Lambda_R : GL(n,\mathbb{C}) \to B$ is also P-L moment map. Λ generates infinitesimal 'quasi-adjoint' action of U(n).

Concretely, for any $Y \in u(n)$ define vector field \tilde{Y} on $GL(n,\mathbb{C})$ by

$$\mathcal{L}_{\tilde{Y}}f := \Im \operatorname{tr} (Y\{f, \Lambda\}_{+}\Lambda^{-1}), \qquad \forall f \in C^{\infty}(GL(n, \mathbb{C}))$$

Integration of infinitesimal action yields U(n) action on $GL(n,\mathbb{C})$:

$$\eta \triangleright K := \eta K \Xi_R(\eta \Lambda_L(K)), \qquad \eta \in U(n), \quad K \in GL(n, \mathbb{C})$$

Now can reduce $(GL(n,\mathbb{C}),\omega_+)$ by choosing $\nu\in B$ and imposing moment map constraint: $\Lambda(K)=\nu,\quad K\in GL(n,\mathbb{C}).$

'Canonical free Hamiltonians' are invariant under the quasi-adjoint action of U(n); thus can be reduced simultaneously. In this way we obtained 'trigonometric Ruijsenaars duality' from P-L duality.

'Unreduced Lax matrices'

generators of
$$C^{\infty}(B)^c$$
: $f_k(b) := \frac{1}{2k} \operatorname{tr}(bb^{\dagger})^k \quad \forall k \in \mathbb{Z}^*$ $/C^{\infty}(B)^c = C^{\infty}(B)^{U(n)}$ – dressing invariants/

generators of
$$C^{\infty}(U(n))^{U(n)}$$
: $\phi_k(g) := \frac{1}{2k} \operatorname{tr}(g^k + g^{-k})$
$$\phi_{-k}(g) := \frac{1}{2k!} \operatorname{tr}(g^k - g^{-k}) \quad \forall k \in \mathbb{Z}_+$$

Canonical Hamiltonians $H_k := f_k \circ \Lambda_R$ and $\widehat{H}_k := \phi_k \circ \Xi_R$ are **spectral invariants** of matrix functions \mathcal{L} and $\widehat{\mathcal{L}}$ defined on the double by

$$\mathcal{L} := \Lambda_R \Lambda_R^{\dagger}$$
 and $\widehat{\mathcal{L}} := \Xi_R$

We call \mathcal{L} and $\widehat{\mathcal{L}}$ unreduced Lax matrices.

The quasi-adjoint action operates on the 'unreduced Lax matrices' \mathcal{L} and $\widehat{\mathcal{L}}$ by similarity transformations. Hence \mathcal{L} and $\widehat{\mathcal{L}}$ yield Lax matrices for reduced systems obtained from $\{H_k\}$ and from $\{\widehat{H}_k\}$. We proved: \mathcal{L} and $\widehat{\mathcal{L}}$ descend to the trigo RS Lax matrices L and \widehat{L} .

Definition of the reduction

- First, fix value of moment map Λ to some constant $\nu \in B$.
- Second, factor level set $\Lambda^{-1}(\nu)$ by isotropy group G_{ν} of ν .

The crux is the choice $\nu := \nu(x)$: with $x \neq 0$ real parameter

$$\nu(x)_{kk} = 1, \quad \forall k, \quad \nu(x)_{kl} = (1 - e^{-2x})e^{(l-k)x}, \quad \forall k < l$$

Useful relation:
$$\nu(x)\nu(x)^{\dagger} = e^{-2x} \left[\mathbf{1}_n + \frac{e^{2nx} - 1}{n} v(x)v(x)^{\dagger} \right]$$

with vector
$$v(x) \in \mathbb{R}^n$$
 defined by $v_k(x) = \sqrt{\frac{n(e^{2x}-1)}{1-e^{-2nx}}}e^{-kx}$

$$F_{\nu(x)} := \Lambda^{-1}(\nu(x))$$
: **embedded** submanifold of $GL(n,\mathbb{C})$ $G_{v(x)} < U(n)$: isotropy group of $v(x)$ – **acts freely** on $F_{\nu(x)}$

Central U(1) < U(n) acts trivially. $G_{v(x)} < G_{\nu(x)}$ isomorphic to $G_{\nu(x)}/U(1)$. Reduced phase space is **smooth manifold** $F_{\nu(x)}/G_{v(x)}$.

We exhibit two models, which will be identified with (P, ω) and with the natural completion of $(\widehat{P}, \widehat{\omega})$, explaining this case of the duality.

Important features of the reduced system

Consider natural embedding ${\cal E}$ and projection π

$$\mathcal{E}: F_{\nu(x)} \to D \equiv GL(n, \mathbb{C}), \quad \pi: F_{\nu(x)} \to F_{\nu(x)}/G_{\nu(x)} \equiv D_{\text{red}}$$

 $(D_{\rm red}, \omega_{\rm red})$ is symplectic manifold characterized by $\mathcal{E}^*\omega_+ = \pi^*\omega_{\rm red}$

 $(D_{\text{red}}, \omega_{\text{red}})$ carries reduced canonical Hamiltonians defined by

$$\pi^* H_k^{\text{red}} = \mathcal{E}^* H_k, \qquad \pi^* \hat{H}_k^{\text{red}} = \mathcal{E}^* \hat{H}_k$$

 $\{H_k^{\text{red}}\}$ and $\{\hat{H}_k^{\text{red}}\}$ form two **Abelian** algebras. Induce **complete** flows on D_{red} : obvious projections of 'canonical free flows'.

The aim is to exhibit concrete models of the reduced phase space.

Preparation for describing the first model

Consider

$$T^*\mathbb{T}^0_n\simeq \mathbb{T}^0_n imes \mathbb{R}^n=\{(e^{2\mathrm{i}q},p)\}, \qquad \Omega_{T^*\mathbb{T}^0_n}\equiv \sum_{k=1}^n dp_k\wedge dq_k$$

and the projection $\pi_1: T^*\mathbb{T}_n^0 \to (T^*\mathbb{T}_n^0)/S_n \equiv T^*(\mathbb{T}_n^0/S_n) \equiv T^*Q(n)$, for which $\pi_1^*(\Omega_{T^*Q(n)}) = \Omega_{T^*\mathbb{T}_n^0}$. That is, consider S_n -covering of phase space $P = T^*Q(n)$.

Define the smooth map $\tilde{\mathcal{I}}: T^*\mathbb{T}_n^0 \to GL(n,\mathbb{C})$ by the following explicit formula:

$$ilde{\mathcal{I}}(e^{2\mathrm{i}q},p)_{kk} = e^{-p_k/2 - 2\mathrm{i}q_k} \prod_{m < k} \left[1 + rac{\sinh^2 x}{\sin^2(q_k - q_m)}
ight]^{-rac{1}{4}} \prod_{m > k} \left[1 + rac{\sinh^2 x}{\sin^2(q_k - q_m)}
ight]^{rac{1}{4}}$$

$$\tilde{\mathcal{I}}(e^{2iq}, p)_{kl} = 0, \quad k > l, \qquad \tilde{\mathcal{I}}(e^{2iq}, p)_{kl} = \tilde{\mathcal{I}}(e^{2iq}, p)_{ll} \prod_{m=1}^{l-k} \frac{e^x e^{2iq_l} - e^{-x} e^{2iq_{k+m}}}{e^{2iq_l} - e^{2iq_{k+m-1}}} \quad k < l$$

Claim: the image of $T^*\mathbb{T}^0_n$ by $\tilde{\mathcal{I}}$ is a symplectic submanifold $\tilde{S} \subset F_{\nu(x)} \subset GL(n,\mathbb{C})$. $(\tilde{S},\omega_+|_{\tilde{S}})$ and $T^*\mathbb{T}^0_n$ are symplectomorphic by $\tilde{\mathcal{I}}$, and furnish symplectic covering spaces of the reduced phase space.

The first model of the reduced phase space

The map $\tilde{\mathcal{I}}: T^*\mathbb{T}_n^0 \to D$ is injective, its image lies in $F_{\nu(x)}$, and it verifies

$$\tilde{\mathcal{I}}^*\omega_+=\Omega_{T^*\mathbb{T}_n^0}.$$

 $\tilde{\mathcal{I}}$ descends to a diffeomorphism $\mathcal{I}: T^*Q(n) \to F_{\nu(x)}/G_{v(x)}$ defined by the equality

$$\mathcal{I} \circ \pi_1 = \pi \circ \tilde{\mathcal{I}},$$

and \mathcal{I} satisfies $\mathcal{I}^*\omega_{\text{red}} = \Omega_{T^*Q(n)}$, where $\pi: F_{\nu(x)} \to F_{\nu(x)}/G_{\nu(x)} \equiv D_{\text{red}}$ is projection.

Thus $(P,\omega) \equiv (T^*Q(n),\Omega_{T^*Q(n)})$ is a model of reduced phase space $(D_{\text{red}},\omega_{\text{red}})$.

With $\tilde{S} \subset \Lambda^{-1}(\nu(x)) \equiv F_{\nu(x)}$, the situation is summarized by the diagram:

$$T^*\mathbb{T}^0_n \qquad \stackrel{\tilde{\mathcal{I}}}{\longrightarrow} \qquad \tilde{S} \subset F_{\nu(x)}$$
 $\pi_1 \downarrow \qquad \qquad \downarrow \quad \pi \qquad \text{with induced S_n-action on \tilde{S}.}$ $T^*Q(n) \qquad \stackrel{\mathcal{I}}{\longrightarrow} \qquad \tilde{S}/S_n \simeq D_{\mathrm{red}}$

The composition $\mathcal{L} \circ \widetilde{\mathcal{I}}$ gives (up to inessential similarity transformation) the Lax matrix L of the original Ruijsenaars-Schneider system, where L is regarded as a function on the covering space $T^*\mathbb{T}_n^0$ of $P=T^*Q(n)$.

Hence trigo RS system (P, ω, L) is reduction of 'free' system $(D, \omega_+, \mathcal{L})$.

Preparations for the second model

Recall (incomplete) dual phase space, $\hat{P} = \mathbb{T}_n \times \mathfrak{C}_x = \{(e^{i\hat{q}}, \hat{p})\}$ with $\hat{\omega} = d\hat{p}_k \wedge d\hat{q}_k$.

Consider $\hat{P}_c := \mathbb{C}^{n-1} \times \mathbb{C}^{\times}$ with the symplectic form

$$\widehat{\omega}_c := rac{\mathrm{i} dZ \wedge dar{Z}}{2ar{Z}Z} + \mathrm{sign}(x) \sum_{j=1}^{n-1} \mathrm{i} dz_j \wedge dar{z}_j, \qquad Z \in \mathbb{C}^{ imes}, \quad z \in \mathbb{C}^{n-1}.$$

Define the smooth injective map $\mathcal{Z}_x:\widehat{P}\to\widehat{P}_c$ by

$$z_j(x,\widehat{q},\widehat{p}) = (\widehat{p}_j - \widehat{p}_{j+1} - |x|)^{\frac{1}{2}} \prod_{k=j+1}^n e^{-\mathrm{i}\widehat{q}_k}, \quad Z(x,\widehat{q},\widehat{p}) = e^{-\widehat{p}_1} \prod_{k=1}^n e^{-\mathrm{i}\widehat{q}_k}, \quad x > 0,$$

$$z_j(x,\widehat{q},\widehat{p}) = (\widehat{p}_j - \widehat{p}_{j+1} - |x|)^{\frac{1}{2}} \prod_{k=1}^j e^{-i\widehat{q}_k}, \quad Z(x,\widehat{q},\widehat{p}) = e^{-\widehat{p}_n} \prod_{k=1}^n e^{-i\widehat{q}_k}, \quad x < 0.$$

 \mathcal{Z}_x is a symplectic embedding of $(\widehat{P}, \widehat{\omega})$ into $(\widehat{P}_c, \widehat{\omega}_c)$, $\mathcal{Z}_x^* \widehat{\omega}_c = \widehat{\omega}$.

The \mathcal{Z}_x -image $\hat{P}_c^0 := \mathcal{Z}_x(\hat{P}) \subset \hat{P}_c$ is dense open submanifold. $\hat{P}_c \setminus \mathcal{Z}_x(\hat{P})$ consists of the points for which some z_j (j = 1, ..., n-1) vanishes.

With $\hat{p} := \operatorname{diag}(\hat{p}_1, \dots, \hat{p}_n)$, define $O(n, \mathbb{R})$ -valued function θ on the closure of \mathfrak{C}_x :

$$\theta(x,\widehat{p})_{jk} := \frac{\sinh(x)}{\sinh(\widehat{p}_k - \widehat{p}_j)} \prod_{m \neq j,k} \left[\frac{\sinh(\widehat{p}_j - \widehat{p}_m - x) \sinh(\widehat{p}_k - \widehat{p}_m + x)}{\sinh(\widehat{p}_j - \widehat{p}_m) \sinh(\widehat{p}_k - \widehat{p}_m)} \right]^{\frac{1}{2}}, \text{ if } j \neq k,$$

$$\theta(x,\widehat{p})_{jj} := \prod_{m \neq j} \left[\frac{\sinh(\widehat{p}_j - \widehat{p}_m - x) \sinh(\widehat{p}_j - \widehat{p}_m + x)}{\sinh^2(\widehat{p}_j - \widehat{p}_m)} \right]^{\frac{1}{2}}.$$

We also use $O(n,\mathbb{R})$ -valued functions $\kappa_L(x)$ and $\zeta(x,\widehat{p})$ and the diffeomorphism $\aleph: \mathbb{T}_n \to \mathbb{T}_n$ provided by

$$\aleph(x,\tau)_j := \prod_{k=j}^n \tau_k^{-1}, \quad x > 0, \qquad \aleph(x,\tau)_j := \prod_{k=1}^j \tau_k^{-1}, \quad x < 0,$$

and notation

$$au_{(x)} := \operatorname{diag}(au_2, \dots, au_n, 1) \quad \text{if} \quad x > 0, \qquad au_{(x)} := \operatorname{diag}(1, au_1, \dots, au_{n-1}) \quad \text{if} \quad x < 0.$$

Finally, define smooth, injective map $k_x: \widehat{P} \to F_{\nu(x)}$ by explicit formula

$$k_x(e^{i\widehat{q}},\widehat{p}) := \left(\kappa_L(x)\aleph(x,e^{i\widehat{q}})_{(x)}\zeta(x,\widehat{p})^{-1}\right) \triangleright \left(\theta(x,\widehat{p})e^{i\widehat{q}}e^{\widehat{p}}\right)^{-1}$$

For full details and the derivation of this formula, see our paper arXiv:0906.4198 [math-ph].

The final result

- $\pi \circ k_x : \widehat{P} \to D_{\text{red}}$ gives symplectic diffeomorphism onto open dense submanifold D^0_{red} of reduced phase space.
- $\hat{\mathcal{L}} \circ k_x$ gives (up to inessential similarity transformation) the dual Lax matrix \hat{L} .
- Thus $(\widehat{P}, \widehat{\omega}, \widehat{L})$ represents the restriction on D^0_{red} of the reduction of the 'free' system $(D, \omega_+, \widehat{\mathcal{L}})$.
- The map $k_x \circ \mathcal{Z}_x^{-1} : \widehat{P}_c^0 \to F_{\nu(x)}$ extends uniquely to a smooth injective map $\widehat{\mathcal{I}} : \widehat{P}_c \to F_{\nu(x)}$ such that $\pi \circ \widehat{\mathcal{I}} : \widehat{P}_c \to D_{\text{red}}$ is a symplectic diffeomorphism. Therefore, $(\widehat{P}_c, \widehat{\omega}_c)$ is a model of the full reduced phase space.

Ruijsenaars' restricted and global duality (action-angle) maps, \mathcal{R}^0 and \mathcal{R} , are obtained geometrically:

$$P^0 \stackrel{\mathrm{id}}{\longrightarrow} P^0 \stackrel{\mathcal{I}^0}{\longrightarrow} F^0_{\nu(x)}/G_{v(x)}$$
 $P \stackrel{\mathcal{I}}{\longrightarrow} F_{\nu(x)}/G_{v(x)}$ $\mathcal{R}^0 \downarrow \qquad \qquad \downarrow \quad \mathrm{id}$ and $\mathcal{R} \downarrow \qquad \qquad \downarrow \quad \mathrm{id}$ $\widehat{P} \stackrel{\mathcal{Z}_x}{\longrightarrow} \widehat{P}^0_c \stackrel{\pi \circ \widehat{\mathcal{I}}^0}{\longrightarrow} F^0_{\nu(x)}/G_{v(x)}$ $\widehat{P}_c \stackrel{\pi \circ \widehat{\mathcal{I}}}{\longrightarrow} F_{\nu(x)}/G_{v(x)}$

All $K \in F_{\nu(x)}$ satisfy $-\frac{1}{2}\log(KK^{\dagger}) \in \overline{\mathfrak{C}}_x$. Dense submanifold $F_{\nu(x)}^0$ is characterized by condition $-\frac{1}{2}\log(KK^{\dagger}) \in \mathfrak{C}_x$. \widehat{P} and P^0 are two models of $D^0_{\text{red}} \equiv F^0_{\nu(x)}/G_{\nu(x)}$.

Concluding remarks

Presented group theoretical method that yields many-body systems together with geometric interpretation of their duality relations.

Technically simplifies parts of original work of Ruijsenaars [88,95]. Main advantage:

Completion of local phase spaces and duality symplectomorphisms result automatically, once the correct starting point is 'guessed'. References: arXiv:0809.1509, 0901.1983, 0906.4198, 1005.4531 [math-ph]

Problems under investigation and plans for the future:

- Study compactified, hyperbolic and elliptic RS systems.
- Explore reduced systems at arbitrary moment map value.
- Quantum Hamiltonian reduction (~ works on special functions) Etingof-Kirillov [94], Noumi [96]: Q.G. interpretation of Macdonald polynomials
- Connections to bispectrality and to separation of variables.
- Derive BC(n) (van Diejen) systems in analogous manner.