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Yesterday, we derived the spin Sutherland model with ‘collective spin variables’,

Hspin−Suth(q, p, ξ) =
1

2
⟨p, p⟩+

1

8

∑
α∈R

2

|α|2
|ξα|2

sin2(α(q)/2)
,

from reduction of ‘geodesic motion’ on the cotangent bundle T ∗G of a compact Lie
group G and discussed its integrability.

We also mentioned the Gibbons–Hermsen (1984) model

HG−H =
1

2

n∑
j=1

p2j +
1

8

∑
j ̸=k

|(SjS†k)|2

sin2((qj − qk)/2)
,

for which a complex row vector Sj := [Sj1, . . . , Sjd] ∈ Cd, d ≥ 2, is attached to the
particle with coordinate qj, representing internal degrees of freedom.

In today’s talk, we focus on generalizations of the first kind of models, utilizing
Heisenberg models instead of cotangent bundles.

If time permits, we shall also outline a generalization of the Gibbons–Hermsen model
(the trigonometric real form of the spin Ruijsenaars–Schneider model of Krichever
and Zabrodin (1995)).
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Reminder on the notion of integrability

Definition I. Let (M, PM) be a finite dimensional, connected, C∞ Poisson manifold,

and H an Abelian Poisson subalgebra of C∞(M) subject to the conditions:

1. As a commutative algebra of functions H has functional dimension ddim(H) = ℓ.

2. The Hamiltonian vector fields of the elements of H are complete and span an ℓ

dimensional subspace of the tangent space over a dense open subset of M.

3. The commutant F of H in C∞(M), which contains the joint constants of motion

of the Hamiltonians H ∈ H, has functional dimension ddim(F) = dim(M)− ℓ.

We refer to the quadruple (M, PM,H,F), or simply H, as a (degenerate) integrable

system of rank ℓ. The standard notion of Liouville integrability results if M is a

symplectic manifold and ℓ = dim(M)/2. Liouville integrability on Poisson manifolds

is the case for which ℓ = k, where k is half the dimension of the maximal symplectic

leaves. When ℓ < k, both on Poisson and symplectic manifolds, then one obtains

the case of degenerate integrability, alternatively called superintegrability. A single

Hamiltonian is called (super)integrable if it is a member of H obeying the definition.
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Reminder on the general picture

Let G be a (connected and simply connected) compact Lie group with simple Lie

algebra G. Denote GC and GC the complexifications, and define P := exp(iG) ⊂ GC.

Example: G = SU(n), GC = SL(n,C), P = {X ∈ SL(n,C) | X† = X, X positive}.

One has the following 3 ‘classical doubles’ of G:

Cotangent bundle T ∗G ≃ G× G∗ ≃ G× G =:M1

Heisenberg double GC
R ≃ G×G∗ ≃ G×P =:M2

Internally fused quasi-Poisson double G×G =:M3

The pull-backs of the relevant rings of invariants

C∞(G)G, C∞(G)G, C∞(P)G

give rise to two ‘master integrable systems’ on each double.

The group G acts on these phase spaces by ‘diagonal conjugations’, i.e., by the

diffeomorphisms

Aiη : (x, y) 7→ (ηxη−1, ηyη−1), ∀(x, y) ∈Mi (i = 1,2,3), η ∈ G.

The G-invariant functions form closed Poisson algebras, and thus the quotient space

Mred
i ≡ Mi/G becomes a (singular) Poisson space, which carries the corresponding

reduced integrable systems.
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Plan of the lecture

• Integrable ‘master system’ on the Heisenberg double

• Poisson reduction of the master system: reduced integrability

• Two descriptions of the reduced Poisson brackets

• Connection to the spin Sutherland models

• The dual system in a nutshell

• Conclusion

• (Appendix: On a generalization of the Gibbons–Hermsen model)
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Preparations. Fix a maximal Abelian subalgebra, G0 < G. A choice of positive roots
with respect to the Cartan subalgebra GC0 < GC leads to the triangular decomposition

GC = GC−+ GC0 + GC+.

Equip the realification GCR of GC with bilinear form ⟨X,Y ⟩I := ℑ⟨X,Y ⟩, where ⟨−,−⟩ is
the Killing form of GC. Then one obtains the decomposition (a Manin triple)

GCR = G + B with B := iG0 + GC+ =: B0 + B+.

Let GC
R a connected and simply connected Lie group with Lie algebra GCR. We may

write any X ∈ GCR as X = XG + XB or as X = X+ + X0 + X− or as X = Y1 + iY2
(Y1, Y2 ∈ G). The complex conjugation θ with respect to G is a Cartan involution and
it lifts to the involution Θ of GC

R. We have the anti-automorphisms

Z 7→ Z† := −θ(Z), K 7→ K† := Θ(K−1), ∀Z ∈ GCR, ∀K ∈ GC
R.

By using the subgroups G < GC
R and B := exp(B) < GC

R, every element K ∈ GC
R admits

the unique (Iwasawa) decompositions:

K = gLb
−1
R = bLg

−1
R with gL, gR ∈ G, bL, bR ∈ B,

which yield the ‘Iwasawa maps’ ΞL,ΞR : GC
R → G and ΛL,ΛR : GC

R → B,

ΞL(K) := gL, ΞR(K) := gR, ΛL(K) := bL, ΛR(K) := bR.

We have the diffeomorphic manifolds M := GC
R, M := G×B and M := G×P.

Shall use the diffeomorphisms m1 := (ΞR,ΛR) : M → M, that is, m1(K) = (gR, bR),
and m2 : M→ M, m2(g, b) := (g, bb†).

The map ν : B ∋ b 7→ bb† ∈ P = exp(iG) ⊂ GC
R is a G-equivariant diffeomorphism if G

acts on P by conjugations and on B by ‘dressing’: Dressη(b) := ΛL(ηb), ∀η ∈ G, b ∈ B.
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The group manifold M = GC
R carries the following two Poisson brackets:

{Φ1,Φ2}± := ⟨∇Φ1, ρ∇Φ2⟩I ± ⟨∇′Φ1, ρ∇′Φ2⟩I, ∀Φ1,Φ2 ∈ C∞(M).

Here, ρ := 1
2 (πG − πB) with πG and πB denoting the projections from GCR onto G and B,

which correspond to the direct sum GCR = G + B. For any real function Φ ∈ C∞(M),
the GCR-valued ‘left- and right-derivatives’ are defined by

⟨X,∇Φ(K)⟩I + ⟨X ′,∇′Φ(K)⟩I :=
d

dt

∣∣∣∣
t=0

Φ(etXKetX
′
), ∀K ∈M, X,X ′ ∈ GCR.

The minus bracket makes M into a Poisson–Lie group, of which G and B are Poisson–
Lie subgroups, i.e., (embedded) Lie subgroups and Poisson submanifolds. Their
inherited Poisson brackets take the form

{χ1, χ2}G(g) = −⟨D′χ1(g), g
−1(Dχ2(g))g⟩I,

{φ1, φ2}B(b) = ⟨D′φ1(b), b
−1(Dφ2(b))b⟩I.

The derivatives are B-valued for χi ∈ C∞(G) and G-valued for φi ∈ C∞(B). The Pois-
son manifolds (M, {−,−}−) and (M, {−,−}+) are known, respectively, as the Drinfeld
double and the Heisenberg double associated with the standard Poisson structures of
G and B. The Poisson bracket {−,−}+ is non-degenerate, its symplectic form reads

Ω+ =
1

2

〈
dbLb

−1
L
∧, dgLg

−1
L

〉
I +

1

2

〈
dbRb

−1
R
∧, dgRg

−1
R

〉
I .

The maps

(ΛL,ΛR) :M → B ×B and (ΞL,ΞR) :M → G×G
are Poisson maps with respect to (M, {−,−}+) and the direct product Poisson struc-
tures on the targets obtained from (B, {−,−}B) and from (G, {−,−}G), respectively.
(References: Semenov-Tian-Shansky [1985] and Alekseev–Malkin [1994]).
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‘Master system’ on M. For any real function ϕ ∈ C∞(P), define its GCR-valued
derivative Dϕ as follows:

⟨X,Dϕ(L)⟩I :=
d

dt

∣∣∣∣
t=0

ϕ(etXLetX
†
), ⟨Y,Dϕ(L)⟩I :=

d

dt

∣∣∣∣
t=0

ϕ(etYLe−tY ), ∀X ∈ B, Y ∈ G.

Using the diffeomorphism m := m2 ◦m1 :M → M = G×P, we transfer the Heisenberg
double Poisson bracket to M = G×P. This gives

{F ,H}M(g, L) = ⟨D2F , (D2H)G⟩I −
〈
gD′1Fg−1,D1H

〉
I + ⟨D1F ,D2H⟩I − ⟨D1H,D2F⟩I ,

where the derivatives of F ,H ∈ C∞(M) are evaluated at (g, L) ∈ M; and D1F ∈ B.

Define the map Ψ : M→ P×P by Ψ(g, L) := (g−1Lg, L), which in terms of the model
M reads (ν ◦ (ΛL)−1, ν ◦ ΛR); remember ν(b) = bb†.

Proposition 1. The two subrings of C∞(M) defined by

H := π∗2
(
C∞(P)G

)
and F := Ψ∗ (C∞(P×P))

engender a degenerate integrable system on the symplectic manifold (M, {−,−}M).
The rank of this integrable system is equal to the rank r = dim(G0) of Lie algebra G.

Proof. One calculates that any Hamiltonian H = π∗2(ϕ) with a function ϕ ∈ C∞(P)G

has the integral curves

(g(t), L(t)) = (exp (tDϕ(L(0))) g(0), L(0)) .
Since the derivative Dϕ : P→ G is G-equivariant, Ψ is constant along these curves,
and it is a Poisson map for the ν-transferred Poisson bracket on P−×P. One can
verify that the derivative DΨ has constant rank, equal to dim(M)− r, at every point
of G × Preg. This implies that F has functional dimension dim(M) − r. It is obvious
that H ⊂ F, and its functional dimension is r, which completes the proof.
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Reduction. Define the ‘conjugation action’ A : G×M by Aη(g, L) := (ηgη−1, ηLη−1).
All H ∈ H and their Hamiltonian vector fields are G-invariant, and the invariant
functions, C∞(M)G, form a Poisson subalgebra. Therefore, we may take the Poisson
quotient

Mred := M/G, C∞(Mred) := C∞(M)G.

We have H ⊂ FG := Ψ∗(C∞(P− ×P)G) ⊂ C∞(M)G.

For Mred is a not a smooth manifold, we restrict to its dense open subset Mred
∗ = M∗/G,

where M∗ ⊂ M is the submanifold of principal orbit type:

M∗ := {(g, L) ∈ M | G(g,L) = Z(G)}. Note: M∗ is stable w.r.t. the flows of C∞(M)G.

The‘ space of constants of motion’ C := Ψ(M) ⊂ P×P is also not a smooth manifold,
but Creg := {L̃, L) ∈ C | L ∈ Preg is a smooth, embedded submanifold of Preg × Preg.
Here, Preg consists of the points of P whose isotropy group in G is a maximal torus.

A key technical point is to consider

C∗ := {(L̃, L) ∈ Creg | G(L̃,L) = Z(G)} and M∗∗ := Ψ−1(C∗).

The restriction of Ψ yields the G-equivariant submersion ψ : M∗∗ → C∗, and we get
the diagram of smooth Poisson submersions (where Mred

∗∗ = M∗∗/G and Cred
∗ = C∗/G):

M∗∗ C∗

Mred
∗∗ Cred

∗

ψ

p2p1

ψred
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The rings H and FG yield the subrings Hred and Fred of C∞(Mred), and we denote their
restrictions on Mred

∗ and Mred
∗∗ by H∗red, H∗∗red and F∗red, F∗∗red, respectively. Moreover, we

define the restricted reduced Poisson manifold by

(C∞(Mred
∗∗ ), {−,−}red∗∗ ) ≃ (C∞(M∗∗)G, {−,−}M∗∗).

Theorem 2. Suppose that r := dim(G0) ̸= 1. Then, the ‘restricted reduced system’
(C∞(Mred

∗∗ ), {−,−}red∗∗ ),H∗∗red) is a degenerate integrable system of rank r with constants
of motion provided by the ring of functions

F♯red := ψ∗red
(
C∞(Cred

∗ )
)
.

That is, the quadruple (Mred
∗∗ , {−,−}red∗∗ ,H∗∗red,F

♯
red) satisfies Definition I, with the co-

dimension of the generic symplectic leaves being equal to r. The reduced Hamiltonian
vector fields associated with H∗∗red span an r-dimensional subspace of the tangent space

at every point of Mred
∗∗ , and the differentials of the elements of F♯red span a co-dimension

r subspace of the cotangent space.

The symplectic leaves in Mred
∗ as well as in Mred

∗∗ are (the connected components of)
the joint level surfaces of the Casimir functions, which are obtained from

Λ∗(C∞(B)G) with the Poisson–Lie moment map Λ : M→ B.

The map Λ is defined by transferring to M the moment map Λ := ΛLΛR : GC
R → B.

The conjugation action of G is orbit-equivalent to the Poisson–Lie action generated
by the moment map.

Corollary 3. The restriction of the system (Mred
∗∗ , {−,−}red∗∗ ,H∗∗red,F

♯
red) of Theorem 2

to any symplectic leaf of Mred
∗∗ of co-dimension r is a degenerate integrable system of

rank r.

Remark: The r = 1 case arises for G = SU(2), and in this case we obtain ‘only’
Liouville integrability.
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The integrability statement can be extended to Mred
∗ by using that at each y ∈ Mred

∗∗
the differentials of the elements of F∗∗red ⊂ F♯red span the same subspace of TyMred

∗∗ as do

the differentials of the elements of F♯red. This can be shown utilizing the fact that for
any smooth action of a compact Lie group on a connected manifold the dimension
of the differentials of the smooth invariant functions at a point of principal orbit type
is equal to the co-dimension of the principal orbits. (We apply this to C∞(P− ×P)G

and use pull-back.) The point is that the elements of Fred belong to C∞(Mred) and
their restrictions give smooth function on Mred

∗ .

Theorem 4. Suppose that r = rank(G) > 1 and consider the restriction of the
master system of free motion on the dense, open submanifold M∗ ⊂ M of principal
orbit type with respect to the G-action. Then, this system descends to the degenerate
integrable system (Mred

∗ , {−,−}red∗ ,H∗red,F
∗
red) on the Poisson manifold Mred

∗ = M∗/G,
where the Poisson subalgebras H∗red and F∗red of C∞(Mred

∗ ) = C∞(M∗)G arise from the
restrictions of H and Fred ≃ Ψ∗(C∞(P− ×P)G) on M∗ ⊂ M, respectively.

11



Dynamical r-matrix formula for reduced Poisson brackets. Restrict to the dense,
open, G-invariant submanifold π−11 (Greg) = Greg × P ⊂ M. Every G-orbit in this
submanifold intersects M0 := {(Q,L) ∈ M | Q ∈ Greg

0 }. The intersection happens in
orbits of the normalizer N := NG(G0), and we obtain the identifications

(Greg ×P)/G ≃ M0/N and C∞(Greg ×P)G ⇐⇒ C∞(M0)
N.

Let F̄ , H̄ ∈ C∞(M0)N be the restrictions of F ,H ∈ C∞(Greg × P)G. Then, we define
their ‘reduced Poisson bracket’ by

{F̄ , H̄}redM0
(Q,L) := {F ,H}M(Q,L), ∀(Q,L) ∈ M0.

Its explicit form contains the dynamical r-matrix R(Q) ∈ End(GCR):

R(Q)(X) :=
1

2
(AdQ + id) ◦ (AdQ − id)−1|GC

⊥
(X⊥), ∀Q ∈ Greg

0 , X = (X0 +X⊥) ∈ GCR,

where X0 ∈ GC0 and X⊥ ∈ GC⊥, in correspondence with GC = GC0 + GC⊥.

Theorem 5. For F̄ , H̄ ∈ C∞(M0)N, the definition implies the formula

{F̄ , H̄}redM0
(Q,L) = ⟨D1F̄ ,D2H̄⟩I − ⟨D1H̄,D2F̄⟩I + ⟨R(Q)D2H̄,D2F̄⟩I,

where the derivatives D1F̄ ∈ B0 and D2F̄ ∈ GCR are taken at (Q,L). The Hamiltonian
H̄(Q,L) = ϕ(L) with ϕ ∈ C∞(P)G induces the evolution equations

Q̇ = (Dϕ(L))0Q, L̇ = [R(Q)Dϕ(L), L] (up to residual gauge transformations).

The formula defines a Poisson algebra structure on C∞(M0)G0 as well. For some
purposes, it is advantageous to use, instead of M0 = Greg

0 ×P, the equivalent model
M0 := Greg

0 ×B. Then, the reduced Poisson bracket becomes

{f̄ , h̄}redM0
(Q, b) = ⟨D1f̄ , D2h̄⟩I − ⟨D1h̄, D2f̄⟩I,+⟨R(Q)(bD′2h̄b

−1), bD′2f̄ b
−1⟩I.

Here, the derivatives are evaluated at (Q, b), with D1f̄ ∈ B0 and D2f̄ , D′2f̄ ∈ G.
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Canonically conjugate pairs and ‘spin’ variables. Let B0 and B+ be the sub-
groups of B associated with the subalgebras in B = B0 + B+. Any b ∈ B is uniquely
decomposed as b = epb+ with p ∈ B0, b+ ∈ B+. Then, we introduce new variables by
means of the map

ζ : M0 = Greg
0 ×B → Greg

0 × B0 ×B+

ζ : (Q, epb+) 7→ (Q, p, λ) with λ := b−1+ Q−1b+Q.

The map ζ is a diffeomorphism. It is equivariant with respect to the G0-actions for
which η0 ∈ G0 sends (Q, b) to (Q, η0bη

−1
0 ) and (Q, p, λ) to (Q, p, η0λη

−1
0 ). Consequently,

ζ induces an isomorphism: C∞(M0)G0 ⇐⇒ C∞(Greg
0 × B0 ×B+)G0.

Any two functions F,H ∈ C∞(Greg
0 ×B0×B+)G0 are related to unique f̄ , h̄ ∈ C∞(M0)G0

by F ◦ ζ = f̄ , H ◦ ζ = h̄. Thus, we can define {F,H}red0 ∈ C∞(Greg
0 × B0 ×B+)G0 by

{F,H}red0 ◦ ζ := {f̄ , h̄}redM0
.

Theorem 6. In terms of the new variables introduced via the map ζ, the reduced
Poisson bracket acquires the following ‘decoupled form’:

{F,H}red0 (Q, p, λ) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I + ⟨λD′λFλ−1, DλH⟩I,
where the derivatives of F,H ∈ C∞(Greg

0 × B0 ×B+)G0 are taken at (Q, p, λ).

Using the identification (B+)∗ ≃ G⊥, the derivatives DλF,D
′
λF ∈ G⊥ are defined by

⟨X+, DλF (Q, p, λ)⟩I + ⟨X ′+, D′λF (Q, p, λ)⟩I =
d

dt

∣∣∣∣
t=0

F (Q, p, etX+λetX
′
+), ∀X+, X

′
+ ∈ B+.
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Comparison with the reduction of T ∗G. The ‘linear analogue’ of the Poisson
algebra (C∞(Greg

0 × B0 ×B+)G0, {−,−}red0 ),

{F,H}red0 (Q, p, λ) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I + ⟨λD′λFλ−1, DλH⟩I,
is given by (C∞(Greg

0 × B0 × B+)G0, {−,−}lin) with

{f, h}lin(Q, p,X) := ⟨DQf, dph⟩I − ⟨DQh, dpf⟩I + ⟨X, [dXf, dXh]⟩I,

where the derivatives are taken at (Q, p,X), and dXf ∈ G⊥ ≃ (B+)∗ denotes the
differential of f with respect to its third variable. An interpretation of these brackets
comes by observing that B ≃ G∗ and B ≃ G∗, and the reductions of (B, {−,−}B) and
(G∗, {−,−}G∗) with respect to the Hamiltonian actions of G0, at the zero value of
the G∗0-valued moment map, give precisely the third term of the respective Poisson
brackets, i.e., they represent G∗//G0 and G∗//G0, respectively. [Beware, in Lecture 1 we
used the alternative model G∗ ≃ G. Thus, ξ ∈ G⊥ used before is now replaced by X ∈ B+.]

The Poisson algebra (C∞(Greg
0 ×B0 ×B+)G0, {−,−}lin) arises from the Poisson reduction of the cotan-

gent bundle T ∗G by the obvious conjugation action, whereby the kinetic energy of the bi-invariant
Riemannian metric of G reduces to the spin Sutherland Hamiltonian:

Hspin−Suth(e
iq, p,X) =

1

2
⟨p, p⟩+

1

8

∑
α∈R+

1

|α|2
|Xα|2

sin2(α(q)/2)
with X =

∑
α∈R+

XαEα ∈ B+.

Proposition 7. For any real ϵ > 0, let us define the G0-equivariant diffeomorphism

µϵ : G
reg
0 × B0 × B+ → Greg

0 × B0 ×B+, µϵ : (Q, p,X) 7→ (Q, ϵp, exp(ϵX)).

Then, {−,−}lin is the ‘scaling limit’ of {−,−}red0 according to the formula

{f, h}lin = lim
ϵ→0

ϵ{f ◦ µ−1ϵ , h ◦ µ−1ϵ }red0 ◦ µϵ.
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Interpretation as spin RS model: Consider the new variable λ = b−1+ Q−1b+Q using

λ = eσ, b+ = eβ, σ =
∑
α>0

σαEα, β =
∑
α>0

βαEα, Q = eiq.

The Baker-Campbell-Hausdorff formula gives

exp(−β+Q−1βQ+
1

2
[Q−1βQ, β] + · · · ) = exp(σ).

As a consequence, βα can be expressed in terms of σ and eiq:

βα =
σα

e−iα(q) − 1
+
∑
k≥2

∑
φ1,...,φk

fφ1,...,φk
(eiq)σφ1 . . . σφk

,

where α = φ1+· · ·+φk and fφ1,...,φk
depends rationally on eiq. This gives a construction

of the inverse of the map ζ : (Q, epb+)→ (Q, p, λ).

Take any finite dimensional irreducible representation ρ : GC → SL(V ). Introduce an
inner product on V so that the dagger, K† = Θ(K−1), becomes the usual adjoint.
Then, the (normalized) character ϕρ(L) = trρ(L) := cρtrρ(L) gives an element of
C∞(P)G. (Here, cρ is a constant, so that trρ(XY ) := cρtr(ρ(X)ρ(Y )) = ⟨X,Y ⟩, ∀X,Y ∈ GC.)

Using the ‘decoupled variables’ (Q, p, σ), Hρ := trρ(epb+b
†
+e

p) can be expanded as

Hρ(eiq, p, σ) = cρtr

(
e2p

(
1ρ +

1

4

∑
α>0

|σα|2ρ(Eα)ρ(E−α)
sin2(α(q)/2)

+ o2(σ, σ
∗)

))
.

I call this a spin Ruijsenaars–Schneider (RS) type Hamiltonian.
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By expanding e2p,

Hρ(eiq, p, σ) = cρdimρ +2trρ(p
2) +

1

2

∑
α>0

1

|α|2
|σα|2

sin2(α(q)/2)
+ o2(σ, σ

∗, p).

Leading term of 1
4
(Hρ−cρdimρ) matches the Hamiltonian Hspin−Suth(eiq, p,X). In other

words, with the ‘scaling map’ µϵ, we have

Hspin−Suth = lim
ϵ→0

1

4ϵ2
(Hρ ◦ µϵ − cρdimρ).

The Poisson brackets of the functions of the ‘spin variables’ X and σ follow from

{Xi, Xj}G∗(X) = ⟨[Y i, Y j], X⟩I, {σi, σj}B(eσ) = ⟨[Y i, Y j], σ⟩I +o(σ),

where Xi = ⟨X,Y i⟩I for a basis {Y i} of G⊥ ⊂ G = G0 + G⊥, and similarly for σ.
Proposition 7 is a consequence of the latter expansion.

The elements of C∞(P)G yield G-invariant functions of ‘Lax matrix’ L(eiq, p, σ) :=
epb+b

†
+e

p, where b+ = b+(eiq, σ) expresses the inverse of our map ζ. In any represen-
tation,

L(eiq, p, σ) = 1+2p+
∑
α>0

(
σα

e−iα(q) − 1
Eα +

σ∗α
eiα(q) − 1

E−α

)
+o(σ, σ∗, p).

This matches the standard, G-valued, spin Sutherland Lax matrix.

In conclusion, our models are ‘deformations’ of the spin Sutherland models, which
can be recovered in the ‘scaling limit’.
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Explicit formulas for GC = SL(n,C): Now parametrize b+ ∈ B by its

matrix elements. We have b = epb+, and can find b+ from the relation

Q−1b+Q = b+λ,

where Q = diag(Q1, . . . , Qn) ∈ Greg
0 , λ ∈ B+ is the constrained ‘spin’

variable and b+ is an upper triangular matrix with unit diagonal.

Introducing Ia,a+j := 1
Qa+jQ

−1
a −1

, we have (b+)a,a+1 = Ia,a+1λa,a+1,

and, for k = 2, . . . , n− a, the matrix element (b+)a,a+k equals

Ia,a+kλa,a+k +
∑

m=2,...,k
(i1,...,im)∈Nm
i1+···+im=k

m∏
α=1

Ia,a+i1+···+iαλa+i1+···+iα−1,a+i1+···+iα.

Then H = tr(bb†) gives

H(eiq, p, λ) =
n∑

a=1

e2pa +
1

4

n−1∑
a=1

e2pa
n−a∑
k=1

|λa,a+k|2

sin2((qa+k − qa)/2)
+ o2(λ, λ

†).

Next, we explain that restricting λ to a minimal dressing orbit of SU(n) results in the

standard (spinless) real, trigonometric Ruijsenaars–Schneider model.
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Taking G = SU(n), let us go back to

{F,H}red0 (Q, p, λ) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I + ⟨λD′λFλ−1, DλH⟩I,
and restrict λ to a minimal dressing orbit. This is the orbit O(y) ⊂ B(n) through

∆(y) := exp (diag((n− 1)y/2,−y/2, · · · ,−y/2)) , for some y ∈ R∗.
It turns out that

O(y) ∩B(n)+ = {Tν(y)T−1 | T ∈ G0},
with the matrix ν(y) ∈ B(n)+ given by ν(y)jk = (1 − e−y) exp((k − j)y/2), ∀j < k.
Therefore the G0-reduced orbit now consist of a single point, and the reduced Poisson
(symplectic) structure is encoded by

{F,H}red0 (Q, p) = ⟨DQF, dpH⟩I − ⟨DQH, dpF ⟩I.
For fixed λ = ν(y) and Q, the equation b−1+ Q−1b+Q = ν(y) determines b+. We find

(b+)kl = QkQ̄l

l−k∏
m=1

e
y

2Q̄k − e−
y

2Q̄k+m−1

Q̄k − Q̄k+m
, 1 ≤ k < l ≤ n, Q̄k = Q−1k = e−iqk.

Then, after the canonical transformation (q, p)→ (q, θ) with

θk = pk −
1

4

∑
m<k

ln

[
1+

sinh2(y/2)

sin2((qk − qm)/2)

]
+

1

4

∑
m>k

ln

[
1+

sinh2(y/2)

sin2((qk − qm)/2)

]
,

we obtain the trigonometric Ruijsenaars–Schneider Hamiltonian from b = epb+:

HRS(q, θ) :=
n∑

k=1

cosh(2θk)
∏
m ̸=k

[
1+

sinh2(y/2)

sin2((qk − qm)/2)

]1

2

=
1

2
tr(bb†) + (bb†)−1).

The symplectic leaf is T ∗Greg
0 /Sn and (q, θ) parametrizes T ∗Greg

0 , which motivated the transformation.
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The dual system in a nutshell

We have the following 3 models of the Heisenberg double

GC
R ≃ G×B ≃ G×P.

To study the ‘dual master system’, the first model, M = GC
R, is convenient.

Recall that K ∈ GC
R admits the Iwasawa decompositions

K = gLb
−1
R = bLg

−1
R with gL, gR ∈ G, bL, bR ∈ B,

which yield the ‘Iwasawa maps’ ΞL,ΞR : GC
R → G and ΛL,ΛR : GC

R → B,

ΞL(K) := gL, ΞR(K) := gR, ΛL(K) := bL, ΛR(K) := bR.

The Abelian Poisson algebra of the ‘dual system’ is H̃ := Ξ∗R(C
∞(G)G). To describe

the integral curve of Ξ∗R(χ) ∈ H̃ through K(0) ∈ GC
R, we need the decomposition

exp(it∇χ(gR(0))) = β(t)−1γ(t) with β(t) ∈ B, γ(t) = G.

For the class function χ ∈ (C∞(G)G), we use the G-valued derivative ∇χ defined by
⟨X,∇χ(g)⟩ := d

dt

∣∣
t=0

χ(etXg), ∀g ∈ G, X ∈ G. Then, the integral curve is

K(t) = K(0)β(t)−1 ←→ bR(t) = β(t)bR(0), bL(t) = bL(0)β(t)
−1, gL(t) = gL(0),

and gR(t) = γ(t)gR(0)γ(t)−1. Since L(t) = bR(t)bR(t)† = β(t)L(0)β(t)†, we also have
the integral curve in terms of the model G×P.
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In this case, we have the map of constants of motion

Ψ̃ : GC
R → GC

R defined by Ψ̃(K) := bLbRg
−1
L ≡ bLgRb

−1
L .

This is equivariant with respect to the conjugation action of G on the target space
GC

R and the action of G on the Heisenberg double that is induced by the Poisson-Lie
moment map Λ = ΛLΛR. The Ψ̃-pullback of the ring of invariants

C∞(GC
R)

G := {F ∈ C∞(GC
R) | F (ηKη−1) ∀η ∈ G, K ∈ GC

R}
yield constants of motion that descend to the reduced phase space. These guarantee
the degenerate integrability of the dual master system and its Poisson reduction.

Let me finish by mentioning the example of dual Ruijsenaars–Schneider system,
given by the ‘main Hamiltonian’

H̃RS :=
n∑

k=1

cos(2θ̂k)
∏
m ̸=k

[
1−

sinh2(y/2)

sinh2((q̂k − q̂m)/2)

]1

2

.

To interpret this, we consider G = SU(n) and pick the same symplectic leaf as
before, which belongs to the specific moment map value ν(y).

In fact, [LF-Klimcik 2011], H̃RS descends from the class function χ(g) := 1
2
ℜ(tr(g)).

The ‘dual position variables q̂k arise from the eigenvalues of L = bRb
†
R. This formula of

the reduced Hamiltonian is valid on a dense open subset. It was shown by Ruijsenaars
in 1995 that H̃RS is Liouville integrable on its complete(d) phase space, and this result
received a natural interpretation in the reduction approach.

This exemplifies the so-called Ruijsenaars duality (or action-position duality) between
two integrable many-body systems.
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Conclusion and open questions

1. I constructed ‘Poisson–Lie deformations’ of trigonometric spin Sutherland models.

2. I proved their degenerate integrability after restriction on the honest Poisson
manifold Mred

∗ ⊂ Mred as well as on the maximal symplectic leaves of the open dense
subset Mred

∗∗ ⊂ Mred
∗ .

3. For lack of time, I did not present it, but recently I also proved integrability on
arbitrary symplectic leaves of Mred

∗∗ (by a different method). This new method will be
reported in my talk at the workshop.

4. Quantization by quantum Hamiltonian reduction?

5. An old open question: Can one derive the spinless (real, repulsive) hyperbolic RS
model by Hamiltonian reduction of a real master integrable system?
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In this Appendix, we sketch a generalization of the trigonometric Gibbons–Hermsen
model. For this, recall the GH model is obtained by Hamiltonian reduction from

T ∗U(n)× Cn×d.
The second factor encodes nd (d ≥ 2) copies of the symplectic vector space R2.
Denote the general element of Cn×d as the matrix Saj, and let (g, J) stand for the
general element of the cotangent bundle, trivialized by right-translations. Then the
following formula gives a Poisson map into u(n) ≃ u(n)∗,

Φ(g, J, S) = J − g−1Jg+ iSS†.

This is the moment map for the Hamiltonian action of U(n) given by

Aη : (g, J, S) 7→ (ηgη−1, ηJη−1, ηS), ∀η ∈ U(n).

Now, reduce by imposing the moment map constraint Φ(g, J, S) = ic1n, with c > 0. On
a dense open subset, one can employ the partial gauge fixing where g = exp(iq) ∈ Tnreg
with the maximal torus Tn < U(n). Then, one gets

Jab = ipaδab − i(1− δab)
SaS

†
b

1− exp(i(qb − qa))
, with arbitrary pa ∈ R.

In this gauge, the ‘free’ Hamiltonian gives H = −1
2
tr(J2) = 1

2

∑n
a=1 p

2
a +

1
8

∑
a̸=b

|SaS†b |2

sin2 qa−qb
2

,

and the moment map constraint implies SaS
†
a = c. The residual gauge transformations

are given by the torus Tn and by the permutation group Sn, and the pertinent open
dense subset of the full reduced phase space can be identified as(

T ∗Tnreg × (CPd−1 × · · · × CPd−1)
)
/Sn,

with n-copies of the complex projective space. (If d = 1, then one gets the spinless
Sutherland model.)
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For generalization, take the unreduced phase spaceM := GL(n,C)×Cn×d, where the
real manifold GL(n,C) ≃ U(n) × P(n) is the Heisenberg double of the Poisson–Lie
group U(n) and the d columns of Cn×d carry a U(n) covariant Poisson structure,

{wk, wl} = i sgn(k − l)wkwl, ∀1 ≤ k, l ≤ n,

{wk, wl} = i δkl(2 + |w|2) + iwkwl + i δkl

n∑
r=1

sgn(r − k)|wr|2 ,

which is due to Zakrzewski (1996), and is actually symplectic. Consider the following
Iwasawa decompositions of K ∈ GL(n,C) and the factorization of (1n+ww†) ∈ P(n):

K = gLb
−1
R = bLg

−1
R , 1n + ww† = b(w)b(w)†

where gL, gR ∈ U(n) and bL, bR,b(w) ∈ B(n): the upper-triangular subgroup of GL(n,C)
with positive diagonal. Then, define the Poisson map Λ :M→ B(n) ≡ U(n)∗ by

Λ(K,w1, . . . , wd) := bLbRb(w
1)b(w2) · · ·b(wd), with (w1, w2, . . . , wd) ∈ Cn×d.

This generates an action of the Poisson–Lie group U(n) on M, and we obtain the
reduced phase space

Mred = Λ−1(eγ1n)/U(n),

which is a smooth symplectic manifold for any γ > 0.

The unreduced phase space carries the commuting Hamiltonians

Hj := tr(Lj) with L := bRb
†
R, j = 1, . . . , n.

They have very simple flows and yield an integrable system on M, quite similar to
the cotangent bundle case.
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We can go to the gauge slice where gR becomes a diagonal matrix, Q ∈ Tnreg.
Decomposing b ∈ B(n) as b = b0b+, with diagonal and unipotent factors, we write

bR = b0b+ and b(w1)b(w2) · · ·b(wd) =: S(W ) =: S0(W )S+(W ).

Then the moment map condition becomes equivalent to the following constraints:

S0(W ) = eγ1n and b+S+(W ) = Q−1b+Q.

The first equation constraints W = (w1, . . . , wd) only, while the second one permits us
to express b+ in terms of Q = eiq ∈ Tnreg and S+(W ) ∈ Cn×d. (Same eq. as b+λ = Q−1b+Q.)

Q ∈ Tnreg and b0 ≡ exp(p), with p = diag(p1, . . . , pn), are arbitrary, and a dense open
subset of the reduced phase space is parametrized by Q, p and the constrained ‘primary
spins’, W , up to the usual residual gauge transformations.

The reduction of the spectral invariants of L = bRb
†
R yields an integrable system.
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To connect our reduced system with the Gibbons–Hermsen model, we introduce a
positive ‘scaling parameter’ ϵ and make the replacements

p→ ϵp, W → ϵ
1

2W, Q→ Q, ΩM → ϵ−1ΩM, γ → ϵγ,

where ΩM is the symplectic form onM. With L := bRb
†
R and bR = exp(ϵp)b+(Q, ϵ

1

2W ),
writing Q = diag(eiq1, . . . , eiqn) and letting wi denote the i-th row of W ∈ Cn×d, we get

lim
ϵ→0

1

8ϵ2
(tr(L) + tr(L−1)− 2n) =

1

2
tr(p2) +

1

32

∑
i̸=j

|wαi w
†
j|2

sin2 qi−qj
2

,

lim
ϵ→0

ϵ−1 (Ωred) =
n∑

j=1

dpj ∧ dqj +
i

2

n∑
j=1

d∑
α=1

dwαj ∧ dwαj ,

reproducing the Hamiltonian and symplectic form of the Gibbons–Hermsen model.

Details are explained in Fairon, L.F. and Marshall: Trigonometric real form of the
spin RS model of Krichever and Zabrodin, [arXiv:2007.08388].

Our construction is a ‘real form’ of earlier reduction treatments of the holomor-
phic spin RS models of Krichever–Zabrodin (1995), which are due to Chalykh and
Fairon [arXiv:1811.08727] and to Arutyunov and Olivucci [arXiv:1906.02619]. The
connection to the Gibbons–Hermsen model was not noticed in those papers.
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We finish by sketching the degenerate integrability of the reduced sys-

tem. For this, we exhibit the sufficient number of integrals of motion.

To do this, we introduce the new ‘spin vectors’ v(1), . . . , v(d) with

v(α) := bRb(w
1) · · ·b(wα−1)wα, which transform nicely under U(n).

Then, we consider the polynomial subalgebra of C∞(M)U(n):

IL = R[trLk,ℜ(Ikαβ),ℑ(I
k
αβ) | 1 ≤ α, β ≤ d, k ≥ 0], Ikαβ := tr

(
v(α)v(β)†Lk

)
.

This is closed under the Poisson bracket and its center contains

Htr := R[trLk, k ≥ 0] .

Explicitly, we have

{IMαβ, I
N
γϵ} = 2iδαϵI

M+N+1
γβ − 2iδγβI

M+N+1
αϵ

+ i(δαϵ − δγβ)IMαβI
N
γϵ+2iδαϵ

∑
µ<α

INγµI
M
µβ − 2iδγβ

∑
λ<β

IMαλI
N
λϵ

+ i sgn(γ − α)IMγβI
N
αϵ − i sgn(ϵ− β)INγβI

M
αϵ

+ i

M−1∑
b=0

+
N−1∑
b=0

(IbγβIM+N−b
αϵ − IM+N−b

γβ Ibαϵ
)

and the reality property {IMαβ, INγϵ} = {I
M
αβ, I

N
γϵ}.
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Our Hamiltonian reduction actually works in the real-analytic category,

and Htr and IL descend to polynomial Poisson algebras on the con-

nected, real-analytic reduced symplectic manifold (Mred,Ωred).

Theorem. The reduced polynomial algebras of functions Hred
tr and

IredL inherited from Htr and IL have functional dimension n and 2nd−
n, respectively. In particular, on the phase space Mred of dimension

2nd, the Abelian Poisson algebra Hred
tr yields a real-analytic, degenerate

integrable system with integrals of motion IredL

Concretely, for any d > 1, we proved that the 2n(d − 1) integrals of

motion:

tr(Lk), Ik1,1, ℜ[Ikα,1], ℑ[Ikα,1]

with k = 1, . . . , n and α = 2, . . . , d− 1, are independent after reduction,

and n further integrals of motion may be selected from the real and

imaginary parts of the functions Ikd,1 in such a way that all in all these

provide a set of 2nd− n independent functions.

In the d = 1 case Hred
tr = IredL and one has (only) Liouville integrability.
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Further results about Poisson reduction. Identity the phase space as

M = {(g, L, v)} = U(n)×P(n)× Cn×d, P(n) := exp(iu(n)),

and consider the U(n)-equivariant Poisson map

Ψ :M→ P(n)×P(n)× Cn×d, Ψ(g, L, v) := (g−1Lg, L, v),

where v := (v(1), . . . , v(d)) with v(α) := bRb(w
1) · · ·b(wα−1)wα.

This encodes the constants of motion for the free system on M.

Define C := Ψ(M) and let Creg ⊂ C be the subset where L is regular.

Next, let C∗ ⊂ Creg andM∗ ⊂M be the dense open subsets of principal

orbit type. Then,

M∗∗ := Ψ−1(C∗) ⊂M∗

is dense and open. We get degenerate integrability of the reduced free

system on the Poisson quotient M∗/U(n) using the restriction of the

invariants Ψ∗(C∞(P(n)×P(n)×Cn×d)U(n)) onM∗. We can also prove

degenerate integrability on the maximal symplectic leaves ofM∗∗/U(n).

28



New results about multi-Hamiltonian structure. Let us consider the
space of ‘primary spins’

W := Cn×d = {(w1, w2, . . . , wd)},
and define on it the commuting vector fields Vj (j = 1, . . . , d) that as
derivations of the evaluation functions satisfy

Vj[w
k] = iδj,kw

k.

They are the infinitesimal generators of the natural U(1) actions on the
d-copies of Cn. They are naturally extended toM = GL(n,C)×W, and
the previously introduced Poisson bivector PM admits the modification

PM → PM+
∑

1≤j<k≤d
xjkVj ∧ Vk

with arbitrary real parameters xjk. The modified Poisson structure
remains symplectic. It admits the same Poisson–Lie moment map as
for xjk ≡ 0, generating the same U(n) action, and the flows of the free
Hamiltonians do not change.

As a result, we obtain a multi-Hamiltonian structure for the reduced
free system on M∗/U(n), and on every symplectic leaf thereof. (One
may also study the full Poisson quotient space M/U(n).)
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