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To begin, recall that the classical Sutherland Hamiltonian, with coupling constant x2,

Htrig−Suth(q, p) ≡
1

2

n∑
k=1

p2k +
1

8

∑
j ̸=k

x2

sin2((qj − qk)/2)
,

admits two kinds of spin extensions. The first one contains Lie algebraic (‘collective’)
spin variables,

Hspin−Suth(q, p, ξ) =
1

2

n∑
k=1

p2k +
1

8

∑
j ̸=k

|ξjk|2

sin2((qj − qk)/2)
,

where ξ ∈ u(n)∗, with zero diagonal part. These models exist for all simple Lie
algebras,

Hspin−Suth(q, p, ξ) =
1

2
⟨p, p⟩+

1

8

∑
α∈R

2

|α|2
|ξα|2

sin2(α(q)/2)
,

and arise from Hamiltonian reduction of the cotangent bundle T ∗G of a compact Lie
group G. The ‘spin variables’ ξα ∈ C (ξ−α = ξ∗α) matter up to gauge transformation
by the maximal torus G0 < G and q, p ∈ iG0 with G0 = Lie(G0). Here, we use the
Killing form and the set of roots R = {α} of the complexified Lie algebra GC.
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The second kind of generalization is the Gibbons–Hermsen model

HG−H =
1

2

n∑
j=1

p2j +
1

8

∑
j ̸=k

|(SjS†
k)|2

sin2((qj − qk)/2)
.

The complex row-vector Sj := [Sj1, . . . , Sjd] ∈ Cd, d ≥ 2, is attached to the particle
with coordinate qj, representing internal degrees of freedom. The overall phases of
the spin vectors Sj can be changed by gauge transformations. This model descends
from the extended cotangent bundle T ∗U(n)× Cn×d.

There exist ‘relativistic’ generalizations of the trigonometric Sutherland models ,
namely the Ruijsenaars–Schneider models: like

Htrig−RS =
n∑

k=1

(cosh pk)
∏
j ̸=k

[
1+

sinh2x

sin2(qj − qk)/2

]1

2

Hcompact−RS =
n∑

k=1

(cos pk)

√√√√∏
j ̸=k

[
1−

sin2x

sin2(qj − qk)/2

]
,

which also admit spin extensions. Of course, there exist also hyperbolic versions and
rational degenerations, like the original Calogero–Moser model,

HCM(q, p) ≡
1

2

n∑
k=1

p2k +
1

2

∑
j ̸=k

x2

(qj − qk)2)
,

and elliptic generalizations, but those will not be treated in this mini-course.
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In this first lecture, after some generalities, I shall focus on the derivation of the
Lie algebraic spin Sutherland models and on explain how their integrability can be
understood in the framework of Hamiltonian reduction. The second and third lectures
will be devoted to Ruijsenaars–Schneider type deformations of the spin Sutherland
systems, and to the compactified Ruijsenaars–Schneider model, respectively.

Plan of the lecture

1. The notion of ‘integrable system’

2. The three doubles and their master integrable systems

3. The simplest example: Spin Sutherland models from cotangent bundles

4. The dual system in a nutshell

3. The notion of generalized action variables and action-angle coordinates

5. Action variables in our examples and their application

Today’s lecture is mainly based on the following papers, where one can find references regarding, for
example, the previously mentioned integrable many-body models.

• LF, Poisson reductions of master integrable systems on doubles of compact Lie groups; arXiv:2208.03728

• LF, Notes on the degenerate integrability of reduced systems obtained from the master systems of

free motion on cotangent bundles of compact Lie groups, arXiv:2309.16245
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We deal with classical integrable systems adopting the following definition.

Let (M, PM) be a finite dimensional, connected, C∞ Poisson manifold, and H an

Abelian Poisson subalgebra of C∞(M) subject to the conditions:

1. As a commutative algebra of functions H has functional dimension ddim(H) = ℓ.

2. The Hamiltonian vector fields of the elements of H are complete and span an ℓ

dimensional subspace of the tangent space over a dense open subset of M.

3. The commutant F of H in C∞(M), which contains the joint constants of motion

of the Hamiltonians H ∈ H, has functional dimension ddim(F) = dim(M)− ℓ.

We refer to the quadruple (M, PM,H,F), or simply H, as a (degenerate) integrable

system of rank ℓ. The standard notion of Liouville integrability results if M is a

symplectic manifold and ℓ = dim(M)/2. Liouville integrability on Poisson manifolds

is the case for which ℓ = k, where k is half the dimension of the maximal symplectic

leaves. When ℓ < k, both on Poisson and symplectic manifolds, then one obtains

the case of degenerate integrability, alternatively called superintegrability. A single

Hamiltonian is called (super)integrable if it is a member of H obeying the definition.

Standard example. Take the Kepler–Coulomb problem governed by the Hamiltonian
H(r⃗, p⃗) = p2/2m−γ/r and canonical Poisson brackets. Let H be generated by H. Then

F is generated by H, the angular momentum L⃗ = r⃗ ∧ p⃗ and the Runge–Lenz vector
K⃗ = p⃗∧ L⃗− γmr⃗/r. One account of the relations L⃗ · K⃗ = 0 and K2 = m2γ2+2mL2H,
one has ddim(F) = 5, and the system is ‘superintegrable’.
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The three doubles and the general philosophy

Let G be a (connected and simply connected) compact Lie group with simple Lie
algebra G. Denote GC and GC the complexifications, and define P := exp(iG) ⊂ GC.
Example: G = SU(n), GC = SL(n,C), P = {X ∈ SL(n,C) | X† = X, X positive}.

One has the following 3 ‘classical doubles’ of G:

Cotangent bundle T ∗G ≃ G× G∗ ≃ G× G =: M1

Heisenberg double GC
R ≃ G×G∗ ≃ G×P =: M2

Internally fused quasi-Poisson double G×G =: M3

The pull-backs of the relevant rings of invariants

C∞(G)G, C∞(G)G, C∞(P)G

give rise to two ‘master integrable systems’ on each double.

The group G acts on these phase spaces by ‘diagonal conjugations’, i.e., by the
diffeomorphisms

Aiη : (x, y) 7→ (ηxη−1, ηyη−1), ∀(x, y) ∈ Mi (i = 1,2,3), η ∈ G.

The G-invariant functions form closed Poisson algebras, and thus the quotient space
Mred

i ≡ Mi/G becomes a (singular) Poisson space, which carries the corresponding
reduced integrable systems.
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A degenerate integrable system on the cotangent bundle T ∗G

The canonical Poisson bracket on the cotangent bundle

M ≡ T ∗G ≃ G× G∗ ≃ G× G = {(g, J) | g ∈ G, J ∈ G} has the form

{F ,H}(g, J) = ⟨∇1F , d2H⟩ − ⟨∇1H, d2F⟩+ ⟨J, [d2F , d2H]⟩,
where the G-valued derivatives are taken at (g, J). Here, ⟨X,Y ⟩ is the Killing form
on G. The derivative d2F ∈ G w.r.t. the second variable J ∈ G is the usual gradient,
while the derivative ∇1F ∈ G w.r.t. first variable g ∈ G is defined by

d

dt

∣∣∣∣
t=0

F(etXg, J) =: ⟨X,∇1F(g, J)⟩, ∀X ∈ G.

The equations of motion generated by the Hamiltonians H of the form H(g, J) = φ(J)
with φ ∈ C∞(G)G read

ġ = (dφ(J))g, J̇ = 0 =⇒ (g(t), J(t)) = (exp(tdφ(J(0)))g(0), J(0)).

The constants of motions are arbitrary functions of J and J̃ := g−1Jg.

We get a degenerate integrable system with

H := {H | H(g, J) = φ(J), φ ∈ C∞(G)G}, ddim(H) = rank(G) := ℓ

F : arbitrary smooth functions of J and J̃ , ddim(F) = 2dim(G)− ℓ,

since J and J̃ are related by the ℓ constraints Pi(J) = Pi(J̃) = 0, where the Pi
(i = 1, . . . , ℓ) are independent invariant polynomials on G.

We call this ‘the integrable system of free motion’.
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The group G acts on M by diagonal conjugations, i.e., by the following maps:

Aη : (g, J) 7→ (ηgη−1, ηJη−1, ∀η ∈ G, with ηJη−1 := Adη(J).

This is a Hamiltonian action, with the ‘momentum map’ Φ(g, J) = J−g−1Jg = J− J̃.
The elements of H and the Poisson structure are G-invariant.

Hamiltonian reduction means that we keep only the invariant with respect to a sym-
metry group. Geometrically, this amounts ‘projecting’ the system onto the quotient
space of the phase space with respect to the action of the symmetry group. A
technical difficulty is that the quotient space M/G is not a smooth manifold.

Let G0 < G a maximal Abelian subalgebra and G0 = exp(G0) < G the maximal torus.
Denote Greg ⊂ G the dense open subset of regular elements, and put Greg

0 := Greg∩G0.
Here, Greg contains the group elements whose centralizer is a maximal torus.

Now, we characterize the reduced system using a ‘partial gauge fixing’. Define

Mreg := {(g, J) ∈ M | g ∈ Greg}, Mreg
0 := {(Q, J) ∈ M | Q ∈ Greg

0 }.
The normalizer N of G0 < G serves as the ‘group of residual gauge transformations’.

Then, Mreg/G ≡ Mreg
0 /N, and the restriction of functions yields the isomorphism

C∞(Mreg)G ⇐⇒ C∞(Mreg
0 )N.

Thus, we can transfer the Poisson bracket from C∞(Mreg)G to C∞(Mreg
0 )N. For any

F,H ∈ C∞(M0)N, the resulting ‘reduced Poisson bracket’ is defined by

{F,H}red(Q, J) = {F ,H}(Q, J),
where F,H are the restrictions of F ,H ∈ C∞(Mreg)G onto the ‘gauge slice’ Mreg

0 .
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To describe the result, consider the decomposition G = G0 + G⊥, where G⊥ is the
orthogonal complement of G0. Define R(Q) ∈ End(G) that vanishes on G0 and,
writing Q = exp(iq) with iq ∈ G0, is given on G⊥ by R(Q) = 1

2
coth( i

2
adq). For SU(n),

(R(Q)X)jk = 1
2
(1 − δjk)Xjk coth(

i
2
(qj − qk)). Defining [X,Y ]R ≡ [RX,Y ] + [X,RY ],

∀X,Y ∈ G, the result is:

{F,H}red(Q, J) = ⟨∇1F, d2H⟩ − ⟨∇1H, d2F ⟩+ ⟨J, [d2F, d2H]R(Q)⟩.
Up to residual gauge transformations, the ‘reduced evolution equation’ generated

on Mreg
0 by H(Q, J) = φ(J), with φ ∈ C∞(G)G, can be written as

Q̇ = (dφ(J))0Q, J̇ = [R(Q)dφ(J), J].

We can parametrize J ∈ G according to

J = −ip+
∑
α∈R+

(
ξα

e−iα(q) − 1
eα −

ξ∗α
eiα(q) − 1

e−α

)
, p ∈ iG0.

Then, we obtain −
1

2
⟨J, J⟩ =

1

2
⟨p, p⟩+

1

8

∑
α∈R

2

|α|2
|ξα|2

sin2(α(q)/2)
,

which is a standard spin Sutherland Hamiltonian Hspin−Suth(q, p, ξ). Here, we use the
root space decomposition of the complexified Lie algebra GC, with the set of roots
R = {α} and corresponding root vectors eα ∈ GC

⊥.

The ‘spin variable’ ξ =
∑

α∈R+
(ξαeα−ξ∗αe−α) matters up to conjugations by any T ∈ G0.

After dividing by G0, there remains a residual gauge symmetry under the Weyl group
W = N/G0. The pertinent dense open subset of the reduced phase space can be
identified as

(
T ∗Greg

0 × (G∗//0G0)
)
/W , with Darboux variables (q, p) on T ∗Greg

0 ≃ Greg
0 ×

G0 and spin variable [ξ] ∈ G∗//0G0.
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We have identified the reduced Hamiltonian coming from the ‘kinetic energy’ as the
spin Sutherland Hamiltonian, at least on a dense open subset of the quotient space.
What about the integrability of the reduced system?

Let Fred denote the constants of motion of the reduced Abelian Poisson algebra Hred.
Since Hred contains all invariant functions of J, we have ddim(Hred) = ddim(H) = ℓ.

We wish to show that ddim(Hred) + ddim(Fred) = ddim(M/G). To do so, consider
the map Ψ : (g, J) 7→ (J̃ , J) and let C ⊂ G×G be its image. This map is G-equivariant,
and we get the commutative diagram:

M C

M/G C/G

Ψ

p2p1

Ψred

Since Ψ is constant along the integral curves of H ∈ H, Ψred is constant along the
integral curves of Hred ∈ Hred. Therefore, Ψ∗

redC
∞(C/G) gives constants of motion for

the reduced system. In favourable circumstances, we get

ddim(Ψ∗
redC

∞(C/G)) = dim(C/G) = dim(C)− dim(G) = ddim(F)− dim(G),

and dim(M/G) = dim(M)− dim(G). Putting this together, we obtain

dim(M) = ddim(H) + ddim(F) =⇒ dim(M/G) = ddim(Hred) + ddim(Fred).

This implies degenerate integrability of the reduced system.
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There is technical problem: neither M/G nor C are smooth manifolds. For this
reasen, we restrict to the dense open submanifold M∗ ⊂ M of principal orbit type.

It is easily seen M∗ = {(g, J) ∈ M | G(g,J) = Z(G)}, and M∗/G is smooth. Moreover,
M∗ is invariant with respect to the Hamiltonian flow of any F ∈ C∞(M)G.

Next, we introduce Creg := {J̃ , J) ∈ C | J ∈ Greg}, which is a smooth, embedded
submanifold of Greg × Greg.

A key point to introduce also

C∗ := {(J̃ , J) ∈ Creg | G(J̃ ,J) = Z(G)} and M∗∗ := Ψ−1(C∗).

These are dense open submanifolds of Creg and of M∗. The restriction of Ψ yields the
G-equivariant submersion ψ : M∗∗ → C∗, and we get the diagram of smooth Poisson
submersions (where Mred

∗∗ = M∗∗/G and Cred
∗ = C∗/G):

M∗∗ C∗

Mred
∗∗ Cred

∗

ψ

p2p1

ψred

Now the previous calculation goes through rigorously, and we obtain a degenerate
integrable system on the dense open submanifold Mred

∗∗ ⊂ Mred
∗ (which is stable under

the flows of the commuting reduced Hamiltonians).
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A slight extension of the method shows integrability on the full smooth Poisson
manifold Mred

∗ = M∗/G.

One can also prove that the Hamiltonian vector fields of Hred span an ℓ-dimensional
subspace of the tangent space at every point of Mred

∗∗ . In general, Mred
∗∗ ⊂ Mred

∗ is a
proper subset.

Consider ℓ independent invariant polynomials, Pi (i = 1, . . . , ℓ) on G. The functions
Pi ◦ Φ ∈ C∞(M)G (where Φ is the momentum map) yield the center of C∞(M)G.
Fixing these Casimir functions defines symplectic leaves in Mred

∗∗ This entails that
degenerate integrability holds after restriction on the generic symplectic leaves of
Mred

∗∗ , of co-dimension ℓ, too.

In fact, fixing the Casimir functions Pi ◦ Φ decreases the number of independent
constants of motion by ℓ, but it also decreases the dimension of the phase space by
ℓ. The restriction of Hred has functional dimension ℓ on every symplectic leaf of Mred

∗∗ .

The method presented above is a refinement of the method applied by N. Reshetikhin
in: Degenerate integrability of spin Calogero–Moser systems and the duality with the
spin Ruijsenaars systems, Lett. Math. Phys. 63 (2003) 55-71; arXiv:math/0202245
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The other degenerate integrable system on M = T ∗G is defined by the

Abelian Poisson algebra

H̃ :=
{
H | H(g, J) = h(g), h ∈ C∞(G)G

}
.

This again has functional dimension ℓ = rank(G). The Hamiltonian H
induces the dynamics

ġ = 0, J̇ = −∇h(g), (g(t), J(t)) = (g(0), J(0)− t∇h(g(0)).

The constants of motion are arbitrary functions of the pair (g,Φ), with

the momentum map Φ(g, J) = J − J̃. They form a Poisson algebra F

of functional dimension 2dim(G)− ℓ, since Φ satisfies

⟨X,Φ(g, J)⟩ = 0, ∀X ∈ G for which gXg−1 = X,

and this gives ℓ independent constraints generically, i.e.., if g ∈ Greg.

To characterize the reduced system, we now introduce an other dense

open subset and alternative gauge slice

M̃reg := {(g, J) ∈ M | J ∈ Greg}, M̃reg
0 := {(g, λ) ∈ M | λ ∈ Greg

0 }.
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On this gauge slice, we find the ‘reduced Poisson bracket’

{F,H}˜red(g, λ) = ⟨∇1F, d2H⟩ − ⟨∇1H, d2F ⟩+ ⟨∇′
1F, r(λ)∇′

1H⟩ − ⟨∇1F, r(λ)∇1H⟩,
and the ‘reduced evolution equations’

λ̇ = −(∇h(g))0, ġ = [g, r(λ)∇h(g)].
Here, r(λ) ∈ End(G) is the standard rational dynamical r-matrix:

r(λ)X = ((adλ)|G⊥
)−1(X⊥), ∀X = (X0 +X⊥) ∈ (G0 + G⊥).

For G = su(n), λ = diag(λ1, . . . , λn), and (r(λ)X)jk = Xjk/(λj − λk).

The degenerate integrability of the reduced systems can be shown similarly as in
the previous case, now using the ‘equivariant map of constants of motion’ given by
Ψ̃ : T ∗G ∋ (g, J) 7→ (g,Φ(g, J)) ∈ G× G.

These systems are usually referred to as rational spin Ruijsenaars type systems, but
their description is much less developed as for the spin Sutherland models.

For G = SU(n), on a special symplectic leaf, the reduced system gives the so-called
Ruijsenaars dual of the trigonometric Sutherland model, with the main Hamiltonian

H̃rat−RS(λ, θ) =
n∑

k=1

(cos θk)
∏
j ̸=k

[
1−

x2

(λk − λj)2

]1

2

,

which descends from the class function h(g) = ℜtr(g), and canonical Poisson brackets.
More precisely, this description is valid only on a dense open subset of the phase space.
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A convenient notion of generalized action variables

Consider an integrable system of rank ℓ on a connected Poisson manifold (M, PM)
given by the Abelian Poisson algebra H. Suppose that we have ℓ smooth functions
H1, . . . , Hℓ on a connected dense open submanifold M̌ ⊂ M subject to the properties:
(i) The map (H1, . . . , Hℓ) : M̌ → Rℓ is the momentum map for a proper and effective
action of an ℓ-dimensional ‘generalized torus’ U(1)ℓ1 × Rℓ2 on M̌.
(ii) The restriction of the elements of H on M̌ can be expressed in terms of H1, . . . , Hℓ

and the span of the exterior derivatives of the elements of H coincides with the span
of the exterior derivatives dH1, . . . , dHℓ at every point of M̌.
Then, we say that the functions H1, . . . , Hℓ are generalized action variables on M̌ for
the integrable system H.

Semi-locally, in a neighbourhood of any principal orbit of U(1)ℓ1 ×Rℓ2, the generalized
action variables are part of generalized action-angle coordinates. If M is symplectic
with ℓ2 = 0, then this follows from a generalization of the classical Liouville–Arnold
theorem due to Nekhoroshev, 1972]. In the Poisson case, with ℓ2 = 0, it follows from
a similar result of [Laurent-Gengoux, Miranda and Vanhaecke, arXiv:0805.1679].

One usually considers action variables on open, not necessarily dense, subsets of
M. In fact, such variables can always be constructed in a neighbourhood of any
connected component of a regular, compact level surface of H, as is shown in the
above mentioned references. Our stronger notion is applicable in many examples.

Actions of compact Lie groups are automatically proper, and traditionally one talks
about action variables only in the compact case.
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Generalized action-angle and transversal coordinates

Theorem [LF-Fairon]. Assume that (M, PM,H) is an integrable system on a con-

nected smooth Poisson manifold of dimension d that admits generalized action vari-

ables H1, . . . , Hℓ on a connected dense open submanifold M̌. Let y0 be a point of M̌
with trivial isotropy group for the generalized torus action, and put pi := Hi−Hi(y0).

Then, there exist a U(1)ℓ1 × Rℓ2-invariant open neighbourhood U ⊂ M around y0 and

functions θ1, . . . , θℓ, z1, . . . , zd−2ℓ : U → R that possess the following properties:

(i) The functions (eiθ1, . . . , eiθℓ1 , θℓ1+1, . . . , θℓ, p1, . . . , pℓ, z1, . . . , zd−2ℓ) define a diffeomor-

phism U −→ (U(1)ℓ1 × Rℓ2)× Cd−ℓ
ϵ for some ϵ > 0, with Cd−ℓ

ϵ denoting a hypercube of

dimension d− ℓ, and y0 corresponds to (e,0).

(ii) The Poisson structure can be written in terms of these coordinates as

PM
∣∣
U =

ℓ∑
i=1

∂

∂θi
∧

∂

∂pi
+

d−2ℓ∑
a,b=1
a<b

fab(z)
∂

∂za
∧

∂

∂zb
,

for some smooth functions fab depending only on z1, . . . , zd−2ℓ.

Moreover, U can be chosen in such a manner that the ‘action coordinates’ pi and

‘transversal coordinates’ za can be expressed in terms of restrictions of elements

of the Abelian Poisson algebra H and its constants of motion F, respectively. The

dynamics generated by any H ∈ H becomes linear in these coordinates.
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Towards action variables on T ∗G: Lie algebraic preparations

Let G0 < G be a maximal torus, with Lie algebra G0 < G. Let us realize G as

G = spanR{ihαj
, (eα − e−α), i(eα + e−α) | αj ∈ ∆, α ∈ R+},

using a Weyl–Chevalley basis of GC:

eα, e−α, hαj
with α ∈ R+, j = 1, . . . , ℓ,

where ∆ = {α1, . . . , αℓ} is a base of the root system R of GC with respect to GC
0 .

Define the open Weyl chamber C ⊂ iG0 and the open Weyl alcove A ⊂ C ⊂ iG0 as
follows:

C := {X ∈ iG0 | 0 < αj(X), ∀j = 1, . . . , ℓ},

A := {X ∈ iG0 | 0 < αj(X), ∀j = 1, . . . , ℓ, and ϑ(X) < 2π},
where ϑ is the highest root with respect to the base ∆. Then, introduce the smooth
mappings φ : Greg → C and χ : Greg → A by the following recipes:

φ(J) = ξ if iξ = AdΓ1(J)(J) ≡ Γ1(J)JΓ1(J)
−1 for some Γ1(J) ∈ G,

χ(g) = ξ if eiξ = Γ2(g)gΓ2(g)
−1 for some Γ2(g) ∈ G.

The formulae

φj := ⟨hαj
, φ⟩ and χj := ⟨hαj

, χ⟩, ∀j = 1, . . . , ℓ,

define real-analytic, K-invariant real functions φj on Greg and χj on Greg, respectively.
They can be extended to globally continuous functions, but not to smooth functions.
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Let PG and PG be the projections from M = T ∗G ≡ G×G onto its respective factors.

Consider the G-invariant dense open, connected submanifolds of M,

Y := G× Greg and Ỹ := Greg × G.
(Note in passing that Y ≡ M̃reg and Ỹ ≡ Mreg.) Using Hj := φj ◦PG and H̃j := χj ◦PG,
fefine the G-invariant mappings

(H1, . . . , Hℓ) : Y → Rℓ and (H̃1, . . . , H̃ℓ) : Ỹ → Rℓ.
Introduce the diffeomorphisms T : Rℓ → G0 and T : Rℓ/(2πZ)ℓ → G0 by

T (τ) := −i
ℓ∑

j=1

τjhαj
and T (τ) := exp

(
−i

ℓ∑
j=1

τjhαj

)
, ∀τ = (τ1, . . . , τℓ) ∈ Rℓ.

Lemma [LF-Fairon]. The map (H1, . . . , Hℓ) is the momentum map for the free Hamil-

tonian action of the torus T := G0 on Y that works according to the formula

(T (τ), (g, J)) 7→ (Γ1(J)
−1T (τ)Γ1(J)g, J), ∀τ ∈ Rℓ, (g, J) ∈ Y.

The map (H̃1, . . . , H̃ℓ) serves as the momentum map generating the free and proper

Hamiltonian action of Rℓ on Ỹ that operates as

(τ , (g, J)) 7→ (g, J − Γ2(g)
−1T (τ)Γ2(g)), ∀τ ∈ Rℓ, (g, J) ∈ Ỹ .

These T- and Rℓ-actions commute with the G-actions restricted on Y and on Ỹ .

Over Y and Ỹ , respectively, the elements of H and H̃ can be expressed as functions

of the above momentum maps, which represent generalized action variables.
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A new result regarding the T ∗G example

Using the G-action, we apply Hamiltonian reduction to the Abelian Poisson algebras
of the globally smooth Hamiltonians, H and H̃, as well as to their action variables.

Let M∗ ⊂ M and Y 1
0 ⊂ Y be the principal orbit type submanifolds for the G-action,

and denote Y0 ⊂ Y the principal isotropy type submanifold for the action of G × T.
These principal isotropy groups are Z(G) and Z(G)× {e}, respectively.

We have Y0 ⊂ Y 1
0 ⊂ Y ⊂ M and Y 1

0 ⊂ M∗.

Theorem [LF-Fairon]. The Abelian Poisson algebra H descends to an integrable

system of rank ℓ on the Poisson manifold M∗/G. The restrictions of this system to

the Poisson manifolds Y0/G and Y 1
0 /G possess action variables given by (H1, . . . , Hℓ),

and the corresponding Hamiltonian T-action is free on Y0/G. As a result, H induces

integrable systems of rank ℓ with action variables arising from (H1, . . . , Hℓ)

• on every sympectic leaf S ⊂ Y0/G;

• and on every such symplectic leaf S ⊂ Y 1
0 /G that intersects Y0/G.

The same statements hold if we replace (Y,H, G×T) by (Ỹ , H̃, G×Rℓ). Except for ℓ = 1

and a few very small symplectic leaves, all these reduced systems are superintegrable.

This theorem a stronger than the previous results, since it establishes integrability
on arbitrary symplectic leaves. Incidentally, it can be shown that M∗∗ ⊆ Y0 holds.

The action-angle theorem and the above result are proved in a joint paper with
M. Fairon, which is about to appear. I will talk about generalizations at the workshop.
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