
Inequivalent quantizations of the three-particle

Calogero model constructed by separation of variables

based on Nucl. Phys. B715 (2005) 713–757

(math-ph/0412095) with T. Fülöp and I. Tsutsui

Some motivations for studying Calogero type models:

– ‘Alcoholics searching for keys under the lamp’ (Calogero 71).

– Relations to CFT, Seiberg-Witten theory and black holes.

– Infinite particle limits relevant in condensed matter theory.

– Symmetric spaces, Lie groups, special functions.

– From the beauty of integrability to testing codes.

– Inequivalent quantizations are related to anomalies, defects,

point interactions and have interesting applications.

Their study involves functional analytic aspects of Q.M.
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Formally, the Calogero-Moser Hamiltonian reads

H = − ~
2

2m

N∑

i=1

∂2

∂x2
i

+
N∑

i=2

i−1∑

j=1

{1
4

mω2(xi − xj)
2 + g(xi − xj)

−2}

Calogero assumed g > − ~2
4m, presented exact solution for any N .

For two particles, relative motion is governed by

Hy = − ~
2

2m

d2

dy2
+

1

2
mω2y2 +

g

2
y−2.

Hy (on the minimal domain) is essentially self-adjoint only if

g ≥ 3~2
4m , otherwise it admits (U(2)-family of) inequivalent self-

adjoint extensions. (‘Tunneling’ effect, Tsutsui et al 2002.)

Energy spectrum is not bounded from below if g < − ~2
4m.

Interesting inequivalent quantizations are expected for any N , if

− ~2
4m ≤ g < 3~2

4m .
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Separation into spherical and radial Hamiltonians

One has H = H0+Hrel, where H0 belongs to center of mass and

Hrel = Hr + r−2HΩ

Hr = − ~
2

2m

d2

dr2
− ~2

2m

N − 2

r

d

dr
+

1

4
Nmω2r2

HΩ = − ~
2

2m
∆Ω + g

N∑

i=2

i−1∑

j=1

[r/(xi − xj)]
2

r: Radial variable on RN−1 spanned by the relative (Jacobi)

coordinates of the particles. ∆Ω: Standard Laplacian on SN−2.

Ω: collection of angle coordinates on the sphere SN−2 ⊂ RN−1.
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Calogero constructed an orthogonal basis of L2(RN−1) in the

factorized form RE,λ(r)ηλ(Ω), where

HΩηλ = ληλ, Hr,λRE,λ = ERE,λ with Hr,λ = Hr + λr−2.

This is equivalent to defining self-adjoint domains for the angular

and radial Hamiltonians HΩ and Hr,λ.

Since L2(RN−1) = L2(R+, rN−2dr)⊗ L2(SN−2),

Hr,λ ≡ r
N−2

2 ◦Hr,λ◦r
2−N

2 = − ~
2

2m

d2

dr2
+

N

4
mω2r2+

~2

8m

(N − 2)(N − 4)

r2
+

λ

r2

must be self-adjoint on L2(R+, dr).

Inequivalent radial quantizations if ~2
8m(N − 2)(N − 4) + λ < 3~2

8m .

(Investigated by Basu-Mallick et al, Wipf et al 2002.)

If ~2
8m(N − 2)(N − 4) + λ < − ~2

8m, then (energy) spectrum is not

bounded from below.
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For N = 3, with ~ = 2m = 1, the angular Hamiltonian becomes

M := HΩ = − d2

dφ2
+

g

2

9

sin2 3φ
. Naively, M has D6 symmetry.
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The angular configuration space S1, with the six singular points
and the six ‘sectors’ between the consecutive singularities (left),
and with the axes of the reflection symmetries of M (right).
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Wish to maintain the D6 symmetry, generated by the particle
permutations and parity, in the inequivalent quantizations of M .

Character table of the dihedral group D6

conjugacy
class {e} {Ri} {Pi} {R±1

π/3} {R±2
π/3} {R3

π/3}

χ++ 1 1 1 1 1 1

χ−+ 1 -1 1 -1 1 -1

χ+− 1 1 -1 -1 1 -1

χ−− 1 -1 -1 1 1 1

χ(2) 2 0 0 1 -1 -2

χ̃(2) 2 0 0 -1 -1 2
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Self-adjoint versions of M

D0 = C∞0 (S1 \ S): minimal domain, S: set of 6 singular points
D1 ⊂ L2(S1): maximal domain for differential operator M

(D1 3 ψ : ψ, ψ′ absolutely continuous, ψ, Mψ square integrable)

Deficiency indices of MD0
are (12,12) for g in our range.

One has M+
D0

= MD1
and self-adjoint extensions of MD0

are
restrictions of MD1

obtained by imposing suitable boundary
conditions at the singular points S.

Local self-adjoint boundary conditions: ensure continuity of
probability current at S. Can be described in the form

(Uθ − 12)Bθ(ψ) + i(Uθ + 12)B
′
θ(ψ) = 0, ∀θ ∈ S

with ‘boundary values’ and ‘connection matrices’ ∀Uθ ∈ U(2).
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Let ϕθ
1, ϕθ

2 be real eigenfunctions of M around θ ∈ S normalized
by the Wronskian condition W [ϕθ

1, ϕθ
2] = 1. Then the ‘boundary

values’ W [ψ, ϕθ
k]θ± = limφ→θ±0 W [ψ, ϕθ

k](φ) exist for any ψ ∈ D1.
Boundary conditions require the vanishing of some linear combi-
nations of the boundary values.

We choose auxiliary ‘reference modes’ ϕθ
k (k = 1,2, i = 1,2,3,

θ ∈ S) as

ϕ
Riθ
k (φ) = (−1)kϕθ

k(Riφ) ϕ0
k(−φ) = (−1)kϕ0

k(φ).

and define the ‘boundary vectors’

Bθ(ψ) :=

[
W [ψ, ϕθ

1]θ+
W [ψ, ϕθ

1]θ−

]
, B′θ(ψ) :=

[
W [ψ, ϕθ

2]θ+
−W [ψ, ϕθ

2]θ−

]
, θ = 0,

2π

3
,
4π

3

Bθ(ψ) :=

[
W [ψ, ϕθ

1]θ−
W [ψ, ϕθ

1]θ+

]
, B′θ(ψ) :=

[
−W [ψ, ϕθ

2]θ−
W [ψ, ϕθ

2]θ+

]
, θ =

π

3
, π,

5π

3
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∀g ∈ D6 gives unitary operator ĝ on L2(S1): (ĝψ)(φ) = ψ(g−1(φ)).
This is symmetry if compatible with the boundary condition, i.e.,
if ĝ preserves the domain of the self-adjoint angular Hamiltonian.

The previously described self-adjoint local boundary condition

(Uθ − 12)Bθ(ψ) + i(Uθ + 12)B
′
θ(ψ) = 0, ∀θ ∈ S,

admits the D6 symmetry iff Uθ = U constant and σ1Uσ1 = U .

MU ≡ MDU
: self-adjoint Hamiltonian with domain DU ⊂ D1

U = eiαIeiβσ1 = eiα
(

cosβ i sinβ
i sinβ cosβ

)
:=

(
A B
B A

)

B = 0: separating cases, six independent sectors on S1

B 6= 0: non-separating cases, unique continuation of the wave
function through the singular points
(U = −12: ‘Dirichlet’, U = 12 ‘Neumann’, U = σ1: ‘free’ case)
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Local eigenfunctions of M = − d2

dφ2 + 9ν(ν−1)
sin2 3φ

with 1/2 < ν < 3/2

v1,µ(φ) := | sin 3φ|νF

(
ν − µ

2
,
ν + µ

2
, ν +

1

2
; sin2 3φ

)

v2,µ(φ) := | sin 3φ|1−νF

(
1− ν − µ

2
,
1− ν + µ

2
,−ν +

3

2
; sin2 3φ

)
,

with the hypergeometric function F (a, b, c; z), are eigenfunctions
of eigenvalue

λ = (3µ)2 for any µ.

But singular at sin23φ = 1 and don’t satisfy boundary condition.
We fix the boundary condition using the reference modes

ϕ0
1(φ) = (3(2ν − 1))−

1
2v1,µ0

(φ)[Θ(φ)−Θ(−φ)]

ϕ0
2(φ) = −(3(2ν − 1))−

1
2v2,µ0

(φ),

and wish to determine the spectrum of MU .
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Some auxiliary functions

To cancel the singularity of vi,µ at π
6, we need the limiting values

ai(µ) := lim
φ→π

6−0
vi,µ(φ), bi(µ) := lim

φ→π
6−0

∂φvi,µ(φ)

Explicitly,

a1(µ) =
Γ(ν + 1

2)Γ(1
2)

Γ(ν+1+µ
2 )Γ(ν+1−µ

2 )
, a2(µ) =

Γ(−ν + 3
2)Γ(1

2)

Γ(−ν+2+µ
2 )Γ(−ν+2−µ

2 )

b1(µ) =
6Γ(ν + 1

2)Γ(1
2)

Γ(ν+µ
2 )Γ(ν−µ

2 )
, b2(µ) =

6Γ(−ν + 3
2)Γ(1

2)

Γ(−ν+1+µ
2 )Γ(−ν+1−µ

2 )

By using these, on sector 1 we can introduce even and odd

smooth eigenfunctions with respect to reflection through π
6.
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The eigenfunctions smooth on S1 \ S, supported on sector 1 are

η1
+,µ(φ) =





b2(µ)v1,µ(φ)− b1(µ)v2,µ(φ) if 0 < φ ≤ π
6 mod 2π

b2(µ)v1,µ(
π
3 − φ)− b1(µ)v2,µ(

π
3 − φ) if π

6 ≤ φ < π
3 mod 2π

0 otherwise

η1−,µ(φ) =





a2(µ)v1,µ(φ)− a1(µ)v2,µ(φ) if 0 < φ ≤ π
6 mod 2π

−a2(µ)v1,µ(
π
3 − φ) + a1(µ)v2,µ(

π
3 − φ) if π

6 ≤ φ < π
3 mod 2π

0 otherwise

and the ones supported on the other five sectors are

ηk±,µ(φ) = η1±,µ(φ− (k − 1)
π

3
), for k = 2, . . . ,6.

The most general smooth eigenfunction for any eigenvalue 9µ2,

ηµ(φ) =
6∑

k=1

(
Ck

+ηk
+,µ(φ) + Ck−ηk−,µ(φ)

)
, ∀Ck± constants,

is square integrable, but does not always lie in the domain DU .
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The eigenvalues λ = (3µ)2 of MU are found as the solutions of

FA(µ) :=
Γ(1+ν+µ

2 )Γ(1+ν−µ
2 )

Γ(2−ν+µ
2 )Γ(2−ν−µ

2 )
=

Γ(ν + 1
2)

Γ(−ν + 3
2)

tan
α± β

2

or

FB(µ) :=
Γ(ν+µ

2 )Γ(ν−µ
2 )

Γ(1−ν+µ
2 )Γ(1−ν−µ

2 )
=

Γ(ν + 1
2)

Γ(−ν + 3
2)

tan
α± β

2

or F2(µ) = ±1
2 with

F2(µ) :=
sinα

sinβ

cosπµ

cosπν
+

cosβ − cosα

(6ν − 3) sinβ
(a1b1)(µ)+

cosβ + cosα

(6ν − 3) sinβ
(a2b2)(µ)

The corresponding eigenfunctions can be written down explicitly.

We have to consider both µ ∈ R+ and µ ∈ iR+.

13



D6 classification of the eigenstates in the separating (β = 0) case

Only the equations FA(µ) = constantA and FB(µ) = constantB
arise and each eigenvalue has multiplicity 6.

The characters χA
µ , χB

µ on the respective eigensubspaces satisfy

χA
µ = χ−++χ−−+χ(2)+χ̃(2), χB

µ = χ+++χ+−+χ(2)+χ̃(2).

The corresponding ‘bosonic’ and ‘fermionic’ states have the form

η
A+
µ =

6∑

k=1

(−1)k+1ηk−,µ, η
A−
µ =

6∑

k=1

ηk−,µ,

η
B+
µ =

6∑

k=1

ηk
+,µ, η

B−
µ =

6∑

k=1

(−1)k+1ηk
+,µ.

‘Type 2’ sates are associated with the characters χ(2) and χ̃(2).
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D6 classification of the eigenstates in the non-separating case

The eigenvalues arising from the solutions of

FA(µ) =
Γ(ν + 1

2)

Γ(−ν + 3
2)

tan
α± β

2
, FB(µ) =

Γ(ν + 1
2)

Γ(−ν + 3
2)

tan
α± β

2

have multiplicity 1. The corresponding eigenstate belongs to the

‘type 1’ (dimension 1) representation with character χ−± in case

A and χ+± in case B, respectively. These states have the same

form as in the separating case.

The eigenvalues arising from F2(µ) = ±1
2 have multiplicity 2.

The corresponding ‘type 2’ (dim. 2) irrep. of D6 has character

χ(2) for 1
2 and character χ̃(2) for −1

2 on the right hand side.
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The shape of the functions FA and FB

FA

µ

FB

µ

FA and FB as the function of µ for µ ≥ 0, with ν = 2/3.
The function FA (resp. FB) diverges at µ∞m (resp. at µ̄∞m):

µ∞m = (ν + 1) + 2m, µ̄∞m = ν + 2m (m = 0,1,2, . . .)

The function FA (resp. FB) vanishes at µ0
m (resp. at µ̄0

m):

µ0
m = (2− ν) + 2m, µ̄0

0 = |1− ν|, µ̄0
m+1 = (3− ν) + 2m.
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One can prove that FA(ix) and FB(ix) increase monotonically
from a positive value to +∞ as x runs from 0 to ∞. Thus
FA(µ) = constant and FB(µ) = constant can lead to at most
one negative eigenvalue, λ = 9µ2. Positive eigenvalues can be
obtained explicitly if constant ∈ {0,±∞}. As for the ‘type 2’ case,

F2

x

  

F2

µ

 

An example of F2(µ), for imaginary values of µ = ix (left) and
for real values of µ (right). The dashed lines lie at ±1

2.
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Explicitly finds ‘type 2’ eigenvalues if last two terms of F2 vanish

F2(µ) :=
sinα

sinβ

cosπµ

cosπν
+

cosβ − cosα

(6ν − 3) sinβ
(a1b1)(µ)+

cosβ + cosα

(6ν − 3) sinβ
(a2b2)(µ)

This happens iff U = ±σ1. Otherwise, qualitative analysis using

(a1b1)(µ) =
6Γ2(ν + 1

2)2
2(ν−1)

Γ(ν + µ)Γ(ν − µ)
, (a2b2)(µ) =

6Γ2(−ν + 3
2)2

−2ν

Γ(1− ν + µ)Γ(1− ν − µ)

‘Stability result’ on negative eigenvalues of MU :
Suppose that all eigenvalues of MU are positive for U = U(α0, β0)
and (α0, β0) are generic in the sense that

| tan α0 ± β0

2
| < ∞, sinβ0 6= 0, (cosα0 + cosβ0) 6= 0.

Then MU with U(α, β) has only positive eigenvalues for any (α, β)
near to (α0, β0). The property of admitting a negative eigenvalue
is also stable generically under small perturbations of U .
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The radial Hamiltonian: Hr,λ = − d2

dr2
+ 3

8ω2r2 +
λ−1

4
r2

must be self-adjoint on a domain in L2(R+, dr). This domain is

unique if λ ≥ 1, and then obtains the eigenvalues/eigenfunctions

Em,λ = 2c(2m + 1 +
√

λ), c :=

√
3

8
ω, m = 0,1,2, . . . ,

ρm,λ(r) = r
1
2+

√
λe−

1
2cr2L

√
λ

m (cr2),

where L
√

λ
m is the Laguerre polynomial (exercise in Landau Q.M.).

There is a one-parameter family of radial quantizations if λ < 1.

We reproduce results of (Wipf et al, Basu-Mallick et al, 2002) for

0 < λ < 1, with independent proofs, and also prove that energy

is not bounded from below if λ < 0.
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The energy spectrum for 0 < λ < 1 is found as the solution of

Fλ(ε) :=
Γ(−ε + 1−

√
λ

2 )

Γ(−ε + 1+
√

λ
2 )

= −Γ(−√λ)

Γ(
√

λ)
κ(λ) with ε :=

E

4c

and ‘quantization parameter’ κ ∈ R ∪ {∞}. The shape of Fλ is

Fλ

Fλ = 0 at 1+
√

λ
2 + m and |Fλ| = ∞ at 1−

√
λ

2 + m for any m ∈ Z+.
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Energy spectrum in the four explicitly solvable cases:
‘Dirichlet’ case, U = −12 (reproduces Calogero’s result):

EA
mn = 2c (2m + 1 + 3(2n + 1 + ν)) , EB

mn = 2c (2m + 1 + 3(2n + ν))

‘Neumann’ case, U = 12:

EA
mn = 2c (2m + 1 + 3(2n + 1 + (1− ν))) ,

EB
mn = 2c (2m + 1 + 3|2n + (1− ν)|) , m, n = 0,1,2, . . . .

Two new isospectral cases, U = ±σ1: Union of the eigenvalues
in the Dirichlet and Neumann cases (for type 1 states), together
with the type 2 eigenvalues, with ∆(ν) := 1

π arccos
(
1
2 cosπν

)
,

E
(2)+
mn = 2c (2m + 1 + 3(2n + (1−∆(ν)))) ,

Ẽ
(2)+
mn = 2c (2m + 1 + 3(2n + 1 + (1−∆(ν))) ,

Ẽ
(2)−
mn = 2c (2m + 1 + 3(2n + ∆(ν))) ,

E
(2)−
mn = 2c (2m + 1 + 3(2n + 1 + ∆(ν))) .
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Concluding remarks

1. System with U = σ1 ‘free’ boundary condition tends to
two-dimensional harmonic oscillator as coupling constant g → 0.
2. What about generalization to arbitrary particle number N?
3. Does integrability select boundary conditions? What about

the scattering problem?
4. Separation of variables in different coordinate systems may
lead to widely different quantizations. Illustration using the
N = 2 Calogero model.
5. By the techniques developed, can study, e.g., the SU(1,1)
anomaly for the radial equation, or the 2-particle dihedral Dn

type Calogero models.
6. Deficiency indices of the original (non-separated) Hamiltonian
are probably infinite, how to investigate it?
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