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Calogero–Moser–Sutherland type integrable many-body models appear in several
fields of physics, and still attract lot of attention due to their rich mathematical
structure. A prime example is the trigonometric Sutherland model governed by the
Hamiltonian

HSuth(q, p) =
1

2

n∑
i=1

p2i +
1

8

∑
k ̸=l

x

sin2 qk−ql
2

, with real coupling constant x > 0.

Due to Olshanetsky–Perelomov (1976) and Kazhdan–Kostant–Sternberg (1978), this
model can be interpreted as a symplectic reduction of the ‘free particle’ moving on the
unitary group U(n). The reduction uses the conjugation action of U(n) on T ∗U(n),
and relies on fixing the relevant moment map to a very specific value.

Allowing arbitrary moment map values, the reduction of T ∗U(n) leads to the trigono-
metric spin Sutherland model having the ‘main Hamiltonian’

Hspin−Suth(q, p, ϕ) =
1

2

n∑
i=1

p2i +
1

8

∑
k ̸=l

ϕklϕlk

sin2 qk−ql
2

, ϕklϕlk = |ϕkl|2,

where the ‘collective spin variable’ ϕ ∈ u(n)∗ ≃
√
−1u(n) has zero diagonal part.
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The holomorphic spin Sutherland model descends by Poisson reduction

from the holomorphic cotangent bundle T ∗GL(n,C), and its trigono-

metric and hyperbolic real forms descend from the real cotangent

bundles T ∗U(n) and T ∗P (n), respectively, where P (n) is the symmet-

ric space GL(n,C)R/U(n) with GL(n,C)R denoting the realification of

GL(n,C). My basic observation is that the cotangent bundles

T ∗GL(n,C), T ∗U(n), T ∗GL(n,C)R

are bi-Hamiltonian manifolds, and the ‘free Hamiltonians’ of these

phase spaces form bi-Hamiltonian hierarchies. By taking Poisson quo-

tient, bi-Hamiltonian spin Sutherland models result.

Application of the same idea to T ∗GL(n,R) leads to the bi-Hamiltonian

structure on the associative algebra gl(n,R) that underlies the linear

and quadratic Poisson structures of the open Toda lattice.
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What is a bi-Hamiltonian system?

We have a classical phase space, whose space of functions carries two

Poisson brackets { , }1 and { , }2 such that the time evolution of any

function F can be written alternatively as

Ḟ = {F,H1}2 = {F,H2}1 with Hamiltonians H1 and H2.

The two Poisson brackets are supposed to be compatible, which means

that any linear combination

λ1{ , }1 + λ2{ , }2
satisfies the Jacobi identity (λ1 and λ2 are arbitrary constants).

Many classical integrable systems are bi-Hamiltonian. A basic fact is

that if the recursion (so-called Magri–Lenard scheme)

{ · , Hm}2 = { · , Hm+1}1 say for all m ∈ N

holds, then {Hm, Hn}1 = {Hm, Hn}2 = 0. Hence we have a set of

commuting Hamiltonians. Under favourable circumstances, they are

part of an integrable Hamiltonian system.
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A well-known lemma about getting compatible Poisson brackets

Lemma 0. Let (A, { , }) be a Poisson algebra and D a derivation

of the underlying commutative algebra A (of functions on the phase

space). Suppose that the bracket

{f, h}D := D[{f, h}]− {D[f ], h} − {f,D[h]}

satisfies the Jacobi identity. Then the formula

{f, h}λ1,λ2 = λ1{f, h}+ λ2{f, h}D

defines a Poisson bracket, for any constant parameters λ1 and λ2.

Note: For any derivation D, the bracket { , }λ1,λ2 is automatically anti-

symmetric and verifies the Leibniz property. It is a simple exercise to

verify the Jacobi identity by direct calculation.
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Plan of the talk

• The holomorphic cotangent bundle of GL(n,C) and its reduction

• Bi-hamiltonian structure on gl(n,R) from reduction of T ∗GL(n,R)

• Spin Sutherland models coupled to two spins from T ∗GL(n,C)R

• Concluding remarks
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On the holomorphic cotangent bundle of GL(n,C)

Denote G := GL(n,C) and equip G := gl(n,C) with the trace form ⟨X,Y ⟩ := tr(XY ).

Consider T ∗G ≃ G× G = {(g, L) | g ∈ G, L ∈ G} =: M,

and let Hol(M) be the commutative algebra of holomorphic functions on M. For any
F ∈ Hol(M), define the G-valued derivatives ∇1F , ∇′

1F and d2F by

⟨∇1F (g, L), X⟩ =
d

dz

∣∣∣∣
z=0

F (ezXg, L), ⟨∇′
1F (g, L), X⟩ =

d

dz

∣∣∣∣
z=0

F (gezX, L), ∀X ∈ G,

and ⟨d2F (g, L), X⟩ = d
dz

∣∣
z=0

F (g, L+ zX). Introduce also

∇2F (g, L) := Ld2F (g, L), ∇′
2F (g, L) := (d2F (g, L))L.

By the triangular decomposition, G = G>+G0+G<, write ∀X ∈ G as X = X>+X0+X<.
Define the classical r-matrix r ∈ End(G) by r(X) := 1

2
(X>−X<), and put r± := r± 1

2
id.

Theorem 1. For functions F,H ∈ Hol(M), the following formulae define two Poisson
brackets:

{F,H}1(g, L) = ⟨∇1F, d2H⟩ − ⟨∇1H, d2F ⟩+ ⟨L, [d2F, d2H]⟩, (1)

and

{F,H}2(g, L) = ⟨r∇1F,∇1H⟩ − ⟨r∇′
1F,∇′

1H⟩
+⟨∇2F −∇′

2F, r+∇′
2H − r−∇2H⟩

+⟨∇1F, r+∇′
2H − r−∇2H⟩ − ⟨∇1H, r+∇′

2F − r−∇2F ⟩, (2)

where the derivatives are evaluated at (g, L), and we put rX for r(X).
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Theorem 2. The first Poisson bracket of Theorem 1 is the Lie derivative of the
second Poisson bracket along the holomorphic vector field on M whose integral curve
through the initial value (g, L) is

ϕz(g, L) = (g, L+ z1n), z ∈ C,

where 1n is the unit matrix. Consequently, the two Poisson brackets are compatible

Denote by V i
H (i = 1,2) the Hamiltonian vector field associated with the holomorphic

function H through the respective Poisson bracket { , }i. For any holomorphic func-
tion, we have the derivatives V i

H[F ] = {F,H}i. We are interested in the Hamiltonians

Hm(g, L) :=
1

m
tr(Lm), ∀m ∈ N. (3)

Proposition 3. The vector fields associated with the functions Hm are bi-Hamiltonian:

{F,Hm}2 = {F,Hm+1}1, ∀m ∈ N, ∀F ∈ Hol(M). (4)

The derivatives of the matrix elements of (g, L) ∈ M give

V 2
Hm

[g] = V 1
Hm+1

[g] = Lmg, V 2
Hm

[L] = V 1
Hm+1

[L] = 0, ∀m ∈ N, (5)

and the flow of V 2
Hm

= V 1
Hm+1

through the initial value (g(0), L(0)) is

(g(z), L(z)) = (exp(zL(0)m)g(0), L(0)). (6)
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Remark. The first bracket is linear in the matrix element variables and is just the
canonical Poisson bracket of the cotangent bundle. The second one is quadratic,
and is obtained from Semenov-Tian-Shanksy’s Heisenberg double G×G of the stan-
dard Poisson–Lie group structure on G by a local change of variables and analytic
continuation.

The essence of Hamiltonian symmetry reduction is that one keeps only the ‘observ-
ables’ that are invariant with respect to the pertinent group action. This is applicable
if, and only if, the invariant functions form a Poisson subalgebra; which is identified
with the Poisson algebra of functions on the quotient space.

We apply this principle to the adjoint action of G on M, for which η ∈ G acts by the
holomorphic diffeomorphism Aη,

Aη : (g, L) 7→ (ηgη−1, ηLη−1). (7)

Thus we keep only the G-invariant holomorphic functions on M, whose set is denoted

Hol(M)G := {F ∈ Hol(M) | F (g, L) = F (ηgη−1, ηLη−1), ∀(g, L) ∈ M, η ∈ G}. (8)

Lemma 4. For F,H ∈ Hol(M)G, the second Poisson bracket (2) simplifies to

2{F,H}2 = ⟨∇1F,∇2H +∇′
2H⟩ − ⟨∇1H,∇2F +∇′

2F ⟩+ ⟨∇2F,∇′
2H⟩ − ⟨∇2H,∇′

2F ⟩. (9)

Therefore, Hol(M)G is closed with respect to both Poisson brackets of Theorem 1.

This follows from (2) using the infinitesimal invariance, ∇′
1H = ∇1H + ∇2H − ∇′

2H,
and similar for F .
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The reduced bi-Hamiltonian hierarchy

We need to fix notations. First, define

G0 := {Q | Q = diag(Q1, . . . , Qn), Qi ∈ C∗} < G, (10)

and its regular part Greg
0 , where Qi ̸= Qj for all i ̸= j. Let N be normalizer of G0 in

G, for which N/G0 = Sn, and let Greg ⊂ G denote the dense open subset consisting
of the conjugacy classes having representatives in Greg

0 . Next, define

Mreg := {(g, L) ∈ M | g ∈ Greg} and Mreg
0 := {(Q,L) ∈ M | Q ∈ Greg

0 }. (11)

We introduce the chain of commutative algebras

Hol(M)red ⊂ Hol(Mreg
0 )N ⊂ Hol(Mreg

0 )G0. (12)

By definition, Hol(M)red contains the restrictions of the elements of Hol(M)G to Mreg
0 ,

and the last two sets contain the respective invariant elements of Hol(Mreg
0 ).

Let ι : Mreg
0 → M be the tautological embedding. Then pull-back by ι provides an iso-

morphism between Hol(M)G and Hol(M)red. Similarly, ι∗ : Hol(Mreg)G → Hol(Mreg
0 )N

is an isomorphism.

Definition 5. Let f, h ∈ Hol(M)red be related to F,H ∈ Hol(M)G by f = F ◦ ι and
h = H ◦ ι. Then we can define {f, h}redi ∈ Hol(M)red by the relation

{f, h}redi := {F,H}i ◦ ι, i = 1,2. (13)

This gives rise to the reduced Poisson algebras (Hol(M)red, { , }redi ).
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Any f ∈ Hol(Mreg
0 ) has the G0-valued derivative ∇1f and the G-valued derivative d2f ,

defined (∀X0 ∈ G0, X ∈ G) by

⟨∇1f(Q,L), X0⟩ =
d

dz

∣∣∣∣
z=0

f(ezX0Q,L), ⟨d2f(Q,L), X⟩ =
d

dz

∣∣∣∣
z=0

f(Q,L+ zX). (14)

Theorem 6. For f, h ∈ Hol(M)reg, the reduced Poisson brackets defined by (13) can
be described explicitly as follows:

{f, h}red1 (Q,L) = ⟨∇1f, d2h⟩ − ⟨∇1h, d2f⟩+ ⟨L, [d2f,R(Q)d2h] + [R(Q)d2f, d2h]⟩, (15)

and

{f, h}red2 (Q,L) = ⟨∇1f,∇2h⟩−⟨∇1h,∇2f⟩+⟨∇2f,R(Q)(∇2h)⟩−⟨∇′
2f,R(Q)(∇′

2h)⟩, (16)

where all derivatives are taken at (Q,L) ∈ Mreg
0 . By construction, these formulae

give two compatible Poisson brackets on Hol(M)red. The same formulae give Poisson
algebra structures on Hol(Mreg

0 )N and on Hol(Mreg
0 )G0 as well.

Here, R(Q) ∈ End(G) is the standard trigonometric solution of the modified classical
dynamical Yang–Baxter equation. By writing Q = eq with q ∈ G0, for any X ∈ G we
have

(R(Q)X)ii = 0, (R(Q)X)ij =
1

2
Xij coth

qi − qj

2
, for i ̸= j.
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How the reduced Poisson bracket formulas were derived?

Basic lemma. Consider f ∈ Hol(Mreg
0 )N given by f = F ◦ ι, where F ∈ Hol(Mreg)G.

Then the derivatives of f and F satisfy the following relations at any (Q,L) ∈ Mreg
0 :

d2F (Q,L) = d2f(Q,L), [L, d2f(Q,L)]0 = 0,

∇1F (Q,L) = ∇1f(Q,L)− (R(Q) +
1

2
id)[L, d2f(Q,L)].

The first equalities hold since f is the restriction of F . In particular, it satisfies

0 =
d

dz

∣∣∣∣
z=0

f(Q, ezX0Le−zX0) = ⟨d2f(Q,L), [X0, L]⟩ = ⟨[L, d2f(Q,L)], X0⟩, ∀X0 ∈ G0.

Next, use the orthogonal decomposition G = G0 + G⊥, and note that the equality
of the G0 parts, (∇1F (Q,L))0 = (∇1f(Q,L))0, is obvious. Then, using any X ∈ G⊥,
notice that

0 =
d

dz

∣∣∣∣
z=0

F (ezXQe−zX, ezXLe−zX) = ⟨X, (id−AdQ−1)∇1F (Q,L) + [L, d2F (Q,L)]⟩,

with AdQ(Y ) := QY Q−1. Therefore

(AdQ−1 − id)(∇1F (Q,L))⊥ = [L, d2F (Q,L)]⊥ = [L, d2f(Q,L)]⊥.

This implies the formula of (∇1F (Q,L))⊥ by elementary identities. For any X ∈ G⊥,

one has (R(Q)+1
2
id)X =

(
id−AdQ−1

)−1

|G⊥
X; and [L, d2f(Q,L)] ≡ ∇2f(Q,L)−∇′

2f(Q,L).
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We associate vector fields to the elements of Hol(M)red using the reduced Poisson
brackets. In particular, the reduced Hamiltonians

hm := Hm ◦ ι ∈ Hol(M)red, hm(Q,L) =
1

m
tr(Lm),

give rise to the vector fields Y i
m on Mreg

0 that satisfy

Y i
m[f ] = {f, hm}redi , ∀f ∈ Hol(M)red, i = 1,2.

These vector fields are not unique, since one may add any vector field to Y i
m that is

tangent to the orbits of the residual gauge transformations.

Proposition 7. For all m ∈ N, the ‘reduced Hamiltonian vector fields’ Y i
m can be

specified by the formulae

Y 1
m+1[Q] = Y 2

m[Q] = (Lm)0Q, Y 1
m+1[L] = Y 2

m[L] = [R(Q)Lm, L].

Thus, Poisson reduction led to the reduced bi-Hamiltonian evolution equations

Q̇ = (Lm)0Q, L̇ = [R(Q)Lm, L], up to residual gauge transformations.

The standard Lax matrix of the spin Sutherland model is L = p + (R(Q) + 1
2
id)(ϕ),

where p is an arbitrary diagonal and ϕ is an arbitrary off-diagonal matrix. The reduced
first Poisson bracket reproduces the standard spin Sutherland Poisson structure of the
Q, p, ϕ variables. Indeed, the diagonal entries pj of p and qj in Qj = eqj form canonically
conjugate pairs with respect to the reduced first Poisson bracket, and the vanishing
of the diagonal part of ϕ represents a constraint on gl(n,C)∗ that is responsible for
the gauge transformations by G0. (Here, we refer to Hol(Mreg

0 )G0.) The Hamiltonians
Hm+1(q, p, ϕ) = 1

m+1
tr(Lm+1) generate the above evolution equations.
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One can obtain bi-Hamiltonian structures for the hyperbolic and trigonometric real

forms by restricting L to be Hermitian and q in Q = eq to be real or purely imaginary,

respectively. In the trigonometric case, by further restricting L to the open subset of

positive matrices and using a different parametrization, the second Poisson structure

becomes identified with that of a spin Ruijsenaars–Schneider model. The trigono-

metric real form also arises from reduction of T ∗U(n), and the hyperbolic real form

from T ∗GL(n,C)R. One may also take L and q to be real, which arises from an open

submanifold of T ∗GL(n,R).

References for the reported work
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A bi-Hamiltonian structure on gl(n,R) from Poisson reduction

Let us equip G := gl(n,R) with the trace form, and consider its vector space decom-
position G = A + B, where A := o(n,R) and B is the upper-triangular subalgebra.
Then

R =
1

2
(πB − πA)

is a solution of the modified classical Yang–Baxter equation. Its has the anti-
symmetric and symmetric parts Ra and Rs, and Ra solves the same equation as
R. Actually, Ra ≡ r = 1

2
(π> − π<) is the real version of the r-matrix used before.

As an example of results of Li–Parmentier and Oevel–Ragnisco from 1989, the fol-
lowing formulas define compatible Poisson brackets on gl(n,R):

{f, h}2 := ⟨∇f,Ra∇h⟩ − ⟨∇′f,Ra∇′h⟩+ ⟨∇f,Rs∇′h⟩ − ⟨∇′f,Rs∇h⟩,

{f, h}1(L) = ⟨L, [Rdf(L), dh(L)] + [df(L), Rdh(L)]⟩.
Here ∇f(L) := Ldf(L) and ∇′f(L) := df(L)L. The Hamiltonians hk(L) := 1

k
tr(Lk)

(k ∈ N) enjoy the relation

{f, hk}2 = {f, hk+1}1, ∀f ∈ C∞(G),
and their Hamiltonian vector fields engender bi-Hamiltonian Lax equations:

∂tk(L) := {L, hk}2 = {L, hk+1}1 = [R(Lk), L], ∀k ∈ N.

It is known that the symmetric matrices as well as the tri-diagonal symmetric matrices

form Poisson submanifolds for both brackets. Taking the tri-diagonal Jacobi matrices,

one recovers the bi-Hamiltonian structure of the open Toda lattice.
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The linear r-matrix bracket given above is well known to descend by Poisson reduction
from the cotangent bundle of G = GL(n,R):

T ∗G ≃ M := G× G = {(g, L) | g ∈ G, L ∈ G}.
In a recent short note, we have shown that the aforementioned quadratic bracket
also descends from M. For this, we first equip M with the two compatible Poisson
brackets defined as before, but taking everything real instead of complex.

We consider those functions on M that are invariant with respect to the symmetry
group S := A×B, where A := O(n,R) and B consists of the upper triangular elements
of G having positive diagonal entries. The action of S on M is given by letting any
(a, b) ∈ A×B act on (g, L) ∈ M by the diffeomorphism (g, L) 7→ (agb−1, aLa−1).

Thanks to the QU factorization (Gram–Schmidt) we may associate with any smooth,
S-invariant functions F,H on M unique smooth functions f, h on G according to the
rule

f(L) := F (1n, L), h(L) := H(1n, L).

The invariant functions turn out to close under both Poisson brackets on M, and
thus we may define the reduced Poisson brackets on C∞(G) by setting

{f, h}redi (L) := {F,H}i(1n, L), i = 1,2.

These reduced Poisson brackets reproduce the ones displayed on the preceding slide.

For details, see L.F. and B. Juhász: A note on quadratic Poisson brackets on gl(n,R)
related to Toda lattices, Lett. Math. Phys. 112:45 (2022)

15



Hyperbolic Sutherland models coupled to two u(n)∗-valued spins

Finally, we outline the derivation of bi-Hamiltonian models, whose main Hamiltonian
‘in physical variables’ reads

Hspin−2 =
1

2

n∑
i=1

(p2i − |ξlii|2) +
∑

1≤i<j≤n

(
|ξlij|2 + |ξrij|2 − 2ℜ(ξrijξ

l
ji)

sinh2(qi − qj)
+

ℜ(ξrijξ
l
ji)

sinh2((qi − qj)/2)

)
.

The two spins ξl, ξr ∈ u(n)∗ ≃ u(n) are coupled by the constraint that the diagonal
part of (ξl + ξr) vanishes, and they matter up to Tn gauge transformations that act
on them by simultaneous conjugations. Here q and p are real, and upon setting ξl = 0
we recover the hyperbolic spin Sutherland Hamiltonian.

Our starting point is the cotangent bundle of the real Lie group G := GL(n,C)R, with
Lie algebra G := gl(n,C)R, which we identify with

M = G× G = {(g, J) | g ∈ G, J ∈ G},
where the real pairing ⟨X,Y ⟩ = ℜtr(XY ) is used on G ≃ G∗. Then the real manifold M
carries a bi-Hamiltonian structure given by the same formulas as in the holomorphic
case, but using this real-valued pairing. For F,H ∈ C∞(M,R):

{F,H}1(g, J) = ⟨∇1F, d2H⟩ − ⟨∇1H, d2F ⟩+ ⟨J, [d2F, d2H]⟩,

{F,H}2(g, J) = ⟨r∇1F,∇1H⟩ − ⟨r∇′
1F,∇′

1H⟩
+⟨∇2F −∇′

2F, r+∇′
2H − r−∇2H⟩

+⟨∇1F, r+∇′
2H − r−∇2H⟩ − ⟨∇1H, r+∇′

2F − r−∇2F ⟩.
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For any k ∈ N, we have the ‘free Hamiltonians’ Hk and H̃k on M defined by

Hk(g, J) :=
1

k
ℜtr(Jk), H̃k(g, J) :=

1

k
ℑtr(Jk).

All these Hamiltonians are in involution, and they define bi-Hamiltonian systems
according to the relations, and corresponding flows, listed as follows:

{ · , Hk}2 = { · , Hk+1}1, (g(t), J(t)) =
(
exp

(
J(0)kt

)
g(0), J(0)

)
,

{ · , H̃k}2 = { · , H̃k+1}1, (g(t), J(t)) =
(
exp

(
−iJ(0)kt

)
g(0), J(0)

)
.

We consider the symmetry group U(n)×U(n) acting on M by the diffeomorphisms

AηL,ηR
: (g, J) 7→ (ηLgη

−1
R , ηLJη

−1
L ).

The invariant functions close under both Poisson brackets, and thus we obtain a bi-
Hamiltonian structure on the quotient space Mred = M/(U(n) × U(n)), whose space
of smooth functions is C∞(M)U(n)×U(n).

We describe the reduced Poisson algebras by using the singular value decomposition,
whereby every g ∈ GL(n,C) can be decomposed as

g = ηLe
qη−1

R , ηL, ηR ∈ U(n), q = diag(q1, q2, . . . , qn), qi ∈ R, q1 ≥ q2 ≥ · · · ≥ qn.
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Every invariant function F ∈ C∞(M)U(n)×U(n) can be recovered from its restriction, f ,
to the following submanifold of M:

Mreg
0 := {(eq, J) | J ∈ G, q = diag(q1, q2, . . . , qn), q1 > q2 > · · · > qn}.

The U(n) × U(n) orbits through Mreg
0 fill the dense open submanifold Mreg, and we

get

C∞(Mreg)U(n)×U(n) ⇐⇒ C∞(Mreg
0 )T

n

.

The Poisson brackets on C∞(Mreg)U(n)×U(n) translate into the reduced PBs {f, h}redi
on C∞(Mreg

0 )T
n

.

We derived the form of the compatible reduced Poisson brackets. Then we recovered
the Sutherland model coupled to two spins by applying a suitable parametrization to
the first reduced Poisson bracket. Namely, we parametrize J ∈ G as follows:

Jij = piδij − (1− δij)
(
coth(qi − qj)ξ

l
ij + ξrij/ sinh(qi − qj)

)
− ξlij, ∀1 ≤ i, j ≤ n,

with ξl, ξr ∈ u(n), satisfying ξlii + ξrii = 0.

For these results, see L.F.: Bi-Hamiltonian structure of Sutherland models coupled
to two u(n)∗-valued spins from Poisson reduction, Nonlinearity 35, 2971-3003 (2022).
There one can find references to earlier papers (by L.F.–Pusztai, Kharchev–Levin–
Olshanetsky–Zotov, Reshetikhin) devoted to similar models, but the bi-Hamiltonian
aspects were not studied before.
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Conclusion

We observed that the cotangent bundles

T ∗GL(n,C), T ∗U(n), T ∗GL(n,C)R, T ∗GL(n,R)

carry natural bi-Hamiltonian structures.

Then we have shown that the Poisson reduction procedures that were studied before
using the canonical Poisson bracket equip the reduced systems with bi-Hamiltonian
structures. The interpretation of the reduced systems as spin Sutherland models relies
on the reduced canonical Poisson bracket (and similar for the open Toda system).

All the reduced systems that we obtained are ‘strongly expected’ to possess the
property of degenerate integrability on generic symplectic leaves in the (full, stratified)
reduced phase space.

How to find bi-Hamiltonian structures for elliptic spin Sutherland models?
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