Poisson—Lie analogues of spin Sutherland models

Kazhdan, Kostant and Sternberg (1978): Derived the trigonometric
Sutherland model by Hamiltonian reduction of free motion on T*U(n).

Analogous reduction of cotangent bundle of any compact simple Lie
group, at arbitrary moment map value, leads to spin Sutherland model.

LF and Klimcik (2009): Poisson-Lie analogue of the KKS reduction of
T*U(n) gives the real, trigonometric Ruijsenaars—Schneider model.

In this talk, based on arXiv:1809.01529, I present generalization of spin
Sutherland models that descend from Poisson—Lie analogue of T*G for
any compact simple Lie group G.

Plan: I start with a recall of the reduction of T*G, then present its
Poisson—Lie analogue. I shall finish with comments on related results,
consequences, generalizations and open problems.



Consider realification of complex simple Lie algebra: (j(c = g+ B.
Compact: G = spang{(Ea — E_q),(Ba + E_q),iTa, | @ € ®T, a, € A}
‘Borel': B =spang{Fq,iEa,Tn, | o € CD"',ak e A}

Isotropic subalgebras w.r.t. bilinear form

(X,Y) :=Im(X,Y), VX,Y € ¢", with Killing form (, ) of g-.

Starting phase space: M = T*G x O with coadjoint orbit © of compact
Lie group . Natural Poisson maps

Jp M —G*, Jp:M—=G*, Jo:M— G
Reduced phase space: M gq := _1(0)/G with  w = J;, + Jr + Jpo.

Myeq contains dense open subset M/ ] = T*T° x Og/T,

where T? is interior of a Weyl alcove in the maximal torus T < G.
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Using G* ~ G and product map ng X Jg X Jp identify

M=GxGx0O={(g,J,&?}, symplectic form:w = —d(J, g~ 1dg) + we.

Moment map p generates ‘conjugation action’ of G:

An(g, J,€) = (ngn~ Y mdn Y nen™1), wneaq.

Every element of 4~ 1(0) is G-equivalent to a triple (Q~1,J,¢&) with Q
from closure of T° C T. Assuming that Q = e'? is regular, one can solve
the constraint, e~ '9Je'? — J = £, as follows:

5 — Z (faEa o ‘SZE—O&)7 J = _Ip + Z (JOZEO{ T J;E—Oé)a
acdTt acdTt

where ip € T is arbitrary and J, = e_if(g)_l. This gives the model

M[S9 = T° x T x (Op/T) = {(%,ip, [E])},  wreq = (dp / dg) + wiSC.
Free Hamiltonian H := —%(J, J) reduces to

1 |¢al?
o2 sjn2 ola)

%Suth(elqapa [‘5]) — E(pap) _I_ 5 Z
a>0

In general, this represents a spin Sutherland model.



Sutherland dynamics is projection of ‘free motion’:

g(t) = g(0) exp(¢J(0)), J(t) =J(0), &) =&(0).

The ‘kinetic energy’ 'H = —%(J, J) belongs to Abelian Poisson algebra
Ci(M) = JE(COO(Q*)G). The free motion is degenerately integrable,
because Cj(M) Poisson commutes with each element of the Poisson
algebra Cj;(M) generated by the components of Jy,Jr and Jp.

Generically, integrability is inherited under Hamiltonian reduction.

(g and B yield two models of G*; G 3 € < £ € B via (£, X) = (£, X),
VX € G. In terms of constrained spin variable £ =% _ 4+ £aFa

1 J&al?
o2 sjn2 ola)

. N 1 1
HSUth(elqapa [g]) — E(pap) _I_ g Z
acdT

This will be convenient for comparison with the spin RS models.



Heisenberg double [Semenov-Tian-Shansky, Alekseev—Malkin].
Consider real Lie group GC and its subgroups G and B, corresponding
to gt =g + B. Every element K & GC admits Iwasawa decompositions

K = bLg}El = grbpt, br,br € B, g1,9r € G.

GC is equipped with symplectic form

Qy = %<dbLbzl A dngil> + % <dbRb§1 A ngg§1> :

Define maps Ar, Ap from GC to B and maps =, =p from G* to G by

AL(K) :=bp, Ap(K):=bgr, Z=(K):=g, =gr(K):=gg

These are Poisson maps w.r.t. Poisson structure associated with Q+
and multiplicative Poisson structures on B and on (.

G acts on B by dressing action, Dressy(b) := Ar(nb), and dressing
orbits (Op,2p,) are symplectic leaves in B.



Reduction of free system on phase space (M, Q):

M:=G"x0p={(K,S) | KeG", Se0p}, Q=4+ Q0,.

Ci(M) = /\E(COO(B)G) gives an Abelian Poisson algebra. Hamiltonian
N5(h) € Cr(M) generates ‘free’ flow

gr(t) = exp td"h(br(0))] gr(0), b (t) = b(0), br(t) = br(0), S(t) = S(0).
This is a degenerately integrable system, since all functions of by,bp
and S are conserved (K = bLg}}1 = ng;%l). They form the ring Cj;(M).

Here, derivative dlh(b) € G of any h € C>®(B) is defined by relation
(dlh(b), X ) := %\S_O h(exp(sX)b) for all X € B and b € B.

A Poisson action of G on M is generated by non-Abelian moment map

A:=AArNo, : M — B=G*, for which A(K,S) = brbpS.

n € G acts by Ap(K,S) = (nK=r(nby,), DressER(nbLbR)_l(S)).

Cr(M) and C;(M)E descend to Myeq := A"1(e)/G.



Maximal torus T < G acts on Opg by conjugations. Writing S € Op

as S = 5054 with S5p € Bg, 5S4 € By, this action has moment map

S — 10g(Sp) € Bg. Imposing Sg = e, we obtain reduced dressing orbit
04 = (0N BL)/T.

We focus on dense open submanifold M9 = E]_%l(Greg) C M, ie
we assume that in K = bLg;il we have gp € G'9.

Main Theorem. The open dense subset M/ d = (A~1(e) N M™9)/G
of M"9 can be identified with

THTO « Ored
where T° C T is open Weyl alcove and Ored is reduced dressing orbit.
The reduced symplectic structure reads Qred = Qo + Qreg

Crux of proof: Z = {(K,S) | AN(K,S) = e, =Zr(K) € T°} meets every
G-orbit, and /\/l d = Z/T. With bp = bgby = ePby and grp = Q, the
constraint becomes

Q 1 'Qby S =e.
bp = el € Bg, Q € T and § = 5S4 € Ogp N By are arbitrary, and by is
determined by @ and 5.



Some notations: Let 6 denote the Cartan involution of g = ¢ + G,
and © the Cartan involution of Gt. We write

xt:=—9(x), K=o 1 for Xxegt Keca"
Defining B := exp(iG) C G, one has G-equivariant diffeomorphism

B3brs bbl € B, with G acting on B by conjugations.

In this way C°(B)C is turned into C*°(B)E, which is generated by the
restrictions of the characters x, of the fundamental irreps of G*.

The ‘main reduced Hamiltonians' descend from the characters. We
define HP € C®(M)C by

HP(K,S) 1= trp(bpbl) := cptr(p(bgbl)) with K = grbyt.

(The constant c, is chosen so that cptr (p(Eq)p(E—q)) = 2/|al?, and
we put trp(XY Z) := cptr(p(X)p(Y)p(Z)) etc.)



Interpretation as spin RS model: Constraint Q—lbfl_lQb+ = S_l,

S_I_ — 60-, b_l_ — 65, O — Z UaEa, /B — Z /BaEa, Q — elq
a>0 a>0

Baker-Campbell-Hausdorff formula gives

exp(5 —~ Q16Q — [Q16Q. Bl + ) = exp(~0).

Ba Can be expressed in terms of ¢ and eld:

Ba = + S: S: f901>---790k(6iq)‘7901 - Oy

E>2 P1se Pk

O«

e_ia(Q) —1

where a = @1 + -+ + ¢, and fy,..o, depends rationally on eld.

Therefore Hf, | = trp(epb+b]:|_ep) can be expanded as

. . 00| EaE—q .
Hioy(e' p, [o]) = trp (e g (1/0 T2 ZO S|n2(oz((J)/2) w2 )>) |

This can be called a spin RS type Hamiltonian.




By expanding e2P

2
red(elq7p7 [O-]) - dlmp +2trp(p2) + Z |O-a| _I_ 02(0-7 J*7p)

2 450 |Oé|25m2(a(q)/2)

Leading term of 4(H — dim,) matches spin Sutherland Hamiltonian

%Suth(e » Dy [5])

red

Poisson brackets of functions of spin variables follow from

{8,815+ = (V" Y'],§), {o",0/}g(e”) = ([Y",Y7],0) + 0(0),
where & = (£,Y?) for a basis {Y?} of T+ C G and similarly for o.

Elements of C;(M) = A% (COO(B)G) descend to G-invariant functions
of ‘Lax matrix’ L(e'e, p, o) := epb+b‘:|_ep. In any representation,

o o

o 17T et 1

L9 po)=1+2p+ 3 ( E_a> +o(0, 0%, p).
a>0

This matches the Sutherland Lax matrix. In conclusion, our models
are generalizations of the spin Sutherland models.
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Explicit formulas for G = SL(n,C): Now parametrize b € B by its
matrix elements. With bp = ePb, we can solve the constraint

Q 1bQ = bS,

where @ = diag(Qq,...,Qn) € T° S € By is the constrained ‘spin’
variable and b is an unknown upper triangular matrix with unit diagonal.

Using the notation Zoo4; = 612_1 - we have by 41 = Ty 0415,a+1,
atjiwa
and, for k=2,...,n— a, the matrix element ba,a_|_,.€ equals
Lo,a+kOa,at+k T > 1 Zaatiy+tiaSatiy4 iy 1,a4ii4-tia

m=2,...k a=1
11+ +im=k

The reduction of H = tr(bRbT) gives

1n1 n—a

Z 2pq Z |Sa,a—|—k|2

4,=1 =1 Sin?((qat-k — 9a)/2)

The minimal dressmg orbit of SU(n) (and a canonical transformation)
results in the standard (spinless) real, trigonometric RS model.

Hyeg(e'9,p, [S]) = Z er“+ +05(S, ST.
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Reduced equations of motion and solutions: Define H € Cj(M) by
H(K,S) = h(bg), and denote (dh)(br) =: V(L) with L := bgrbL,. The
Hamiltonian vector field of H on M gives

gr=V(L)gr, br=0, $=0 (K =brgp' =grbp).
In the ‘diagonal gauge' Z, where gp = Q € T?, one recovers S from Q
and L = bgbl, via S = bp1Q 1hps.

Decomposeany Y € GasY = Yy+Y, using G = T+7T~. Introduce the
dynamical r-matrix R(Q) that acts as zero on the Cartan subalgebra
7€ of G and acts on the span of the root vectors by

R(Q) = %(AdQ +id)(Adg —id)t.

Proposition. The projection of the Hamiltonian vector field to the
‘diagonal gauge’ reads

Q =Vr(L)Q, L=[Yr+ (R(Q) +1/2)V, (L), L],
where Y7 is arbitrary. The solutions are obtained by diagonalization:

Q(t) = n(t)exp(tV(L(0))Q0)n(t)~t with n(t) € G,
and then L(t) = n(t)L(O)n(t)~1 = np ()e?PDn_ ()T, with ny(t) € By
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Constants of motion and integrability

Poisson algebra of integrals of free motion, C;(M), consists of all func-
tions of by,bp and S, and CJ(M)G suffices for degenerate integrability
of reduced system. Particular G-invariant constants of motion are

F(K,8) = try(P(bgbly, 95 brbRIR) ), (95 brbRgr = by (b)),
where P is any non-commutative polynomial. In the ‘diagonal gauge’,
these give

Fred(Q, L) = tr, (P(L, Q_lLQ)) .

Spectral parameter dependent Lax matrix generates special integrals
L) =L+ 2 1LQ.
Reduced Hamiltonian vector field of H = A%L(h) € Cr(M) implies
L) =[Yr+ (R(Q) +1/2)V, (L), LN)].

The reduced system is ‘obviously’ integrable in every reasonable sense.
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Alternative construction: Poisson reduction

Instead of symplectic reduction, one may simply take the quotient of
the unreduced phase space by the G-action.

In the G = U(n) case, the functions on the quotient can be identified
with T"-invariant (and Weyl-invariant) functions on the gauge slice

{(Q,L) | Q € Treg, L € iu(n)}.

The respective quotients of T*U(n) and the Heisenberg double GL(n,C)
lead to the compatible Poisson brackets:

{f7 h}g_ed(Q7 L) — <D1f7 d2h> _ <D1h7 d2f> _I_ <L7 [d2f7 d2h]R(Q)>7
and

{£.h}59(Q, L) = (D1f, Ldoh) — (D1h, Ldo f) + 2(Ldo f, R(Q) (Ldah)).
The derivatives D1f € b(n)g and dof € u(n) are evaluated at (Q, L),
and we use [X, Y]R(Q) =[RQ)X, Y]+ [V, R(Q)Y].

This gives the bi-Hamiltonian ‘spin Ruijsenaars—Sutherland’ hierarchy:

: 1
{fihgto ={f  hgg1tr  with  hy 1= Etr(L’“), k € N.
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Concluding remarks

1. Degenerate integrability can be proved (generically) relying on the
G-equivariant map J = Ap X ApAgp X ApLAgRNo, : M — B X B X B.

2. Our trigonometric spin RS systems are related by analytic continua-
tion to hyperbolic spin RS systems derived by L.-C. Li [2006] based on
dynamical Poisson groupoids [used only the variables (g, L)]. They can
be viewed as real forms of holomorphic spin RS systems descending
from the Heisenberg double of G, studied by Reshetikhin [2016].

3. Our reduced Hamiltonian flows are automatically complete. This
framework accommodates action-angle duals, too.

4. We have a generalization involving twisted conjugations of G.

5. Compactified trigonometric spin RS models should arise from re-
ductions of quasi-Hamiltonian double GG x G.

6. Gibbons—Hermsen type spin RS models can be obtained reducing
GL(n,C) x C™ x --- x C™ with constraint ALARAT AS" - AL = €71,

Currently studied with I. Marshall; related work by Chalykh and Fairon.
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