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We study a generalization of the famous integrable systems exemplified

by the trigonometric Sutherland model

Htrigo−Suth =
1

2

n∑
k=1

p2
k +

1

2

∑
j 6=k

x2

sin2(qk − qj)

and the trigonometric Ruijsenaars–Schneider (RS) model

Htrigo−RS =
n∑

k=1

(cosh pk)
∏
j 6=k

[
1 +

x2

sin2(qk − qj)

]1
2

These models describe integrable interactions of n points moving on

the circle, and generalize the rational Calogero–Moser model having

the Hamiltonian

HCM =
1

2

n∑
k=1

p2
k +

1

2

∑
j 6=k

x2

(qk − qj)2
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A powerful approach to these systems consists in presenting them as
Hamiltonian reductions of ‘obviously integrable’ simple systems on suit-
able higher dimensional phase spaces.

For example, to derive the Calogero model (OP [76], KKS [78]) consider
the phase space T ∗iu(n) ' iu(n) × iu(n) := {(Q,P )} equipped with
the commuting family of ‘free’ Hamiltonians {tr(P k)}. Reduce by the
‘conjugation action’ of U(n) using the moment map constraint

[Q,P ] = ix
∑
j 6=k

Ej,k

A model of the reduced phase space is defined by the ‘gauge slice’
whose elements (Q,P ) have the form

Q = diag(q1, . . . , qn), q1 > · · · > qn,

and

P = diag(p1, . . . , pn) + ix
∑
j 6=k

Ejk

qj − qk
.

Then tr(dP ∧ dQ) =
∑n
k=1 dpk ∧ dqk gives the reduced symplectic form

and 1
2tr(P2) yields the rational Calogero Hamiltonian. The family

{tr(P k)} guarantees its Liouville integrability.
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To sketch another example, let us start with the symplectic manifold

T ∗U(n)× Cn×d

for some natural number d. The second factor encodes nd copies of the

symplectic vector space R2. Denote the general element of Cn×d as the

matrix Saj, and let (g, J) stand for the general element of the cotangent

bundle, trivialized by right-translations. The conventions are such that

the following formula gives a Poisson map into u(n), identified with its

own dual space:

Φ(g, J, S) = J − g−1Jg + iSS†

This is the moment map for the following Hamiltonian action of U(n):

Aη : (g, J, S) 7→ (ηgη−1, ηJη−1, ηS), ∀η ∈ U(n).

We reduce by imposing the moment map constraint

Φ(g, J, S) = ic1n,

where c is a non-zero real, positive constant. Now, on a dense open

part we can go to a partial gauge fixing, where g = exp(iq) with q being
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a real diagonal matrix having different eigenvalues q1, q2, . . . , qn, so that
eiq ∈ Tnreg. Then we get

Jab = ipaδab − i(1− δab)
(Sa, Sb)

1− exp(i(qb − qa))

with arbitrary real pa. Here, (Sa, Sb) :=
∑d
j=1 SajS̄bj The reduced ‘free’

Hamiltonian reads

H = −
1

2
tr(J2) =

1

2

n∑
a=1

p2
a +

1

4

∑
a6=b

|(Sa, Sb)|2

sin2 qa−qb
2

.

The row-vector Sa := [Sa1, . . . , Sad] is interpreted as some internal,
‘spin’ degree of freedom attached to the particle with coordinate qa.
The moment map constraint becomes equivalent to (Sa, Sa) = c, i.e.,
Sa is a non-zero Cd-vector of fixed length. Therefore the residual gauge
transformations, which are given by the torus Tn and by the permuta-
tion group Sn, act freely. We obtain the reduced phase space(

T ∗Tnreg × (CPd−1 × · · · × CPd−1)
)
/Sn

with n-copies of the complex projective space, if d > 1. If d = 1, then
we get the spinless Sutherland model. If d > 1 this the ‘spin Sutherland
model’ due to Gibbons and Hermsen.



The model of our present interest was introduced by Krichever and

Zabrodin in 1995. It deals with the dynamics of ‘particle positions’ xi
(i = 1, . . . , n) and d-component, complex row vectors ci, and column

vectors ai. The ‘individual spins’ enter the ‘composite spin variables’

Fij := ci · aj :=
∑d
α=1 c

α
i a

α
j , and the equations of motion read

ẋi = Fii, ȧαi = λia
α
i +

∑
k 6=i

V (xik)aαkFki, ċαj = −λjcαj −
∑
k 6=j

V (xkj)c
α
kFjk

where xik := xi − xk. In the elliptic case the ‘potential’ is V (x) =

ζ(x) − ζ(x + γ) with the Weierstrass zeta-function and an arbitrary

‘coupling constant’ γ 6= 0. These imply the second order equations

ẍi =
∑
j 6=i

FijFji
[
V
(
xij
)
− V

(
xji
)]
.

The parameters λi are arbitrary, and the ‘physical observables’ are in-

variant with respect to arbitrary rescalings ai 7→ Λ−1
i ai, ci 7→ Λici.

4



Krichever and Zabrodin derived these equations from the dynamics of
the poles of the elliptic solutions of the 2D non-Abelian Toda lattice,
and asked about their Hamiltonian interpretation and integrability.

In the rational case, V rat(x) = x−1 − (x + γ)−1, the answers were
provided by Arutyunov and Frolov (1998), who re-derived the model
via Hamiltonian reduction of a spin extension of the cotangent bundle
of GL(n,C), T ∗GL(n,C) × C2nd. Twenty years later, the trigonomet-
ric/hyperbolic case was treated, first by Chalykh and Fairon and then
by Arutyunov and Olivucci, applying quasi-Hamiltonian reduction and
Hamiltonian reduction techniques, respectively. (The two methods led
to different Hamiltonian structures for the model.)

Krichever (1998) proved the existence of Hamiltonian structure in the
general case.

The pioneering papers on Calogero and Ruijsenaars type system were
devoted to point particles moving along the real line or circle. However,
all the above mentioned works deal with holomorphic systems. The real
forms require separate attention, which poses open problems.
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In this talk, we inquire about the trigonometric real form defined by

taking V (x) := cot(x)− cot(x− iγ) with a real, positive γ, and setting

xj := 1
2qj where the qj are real and are regarded as angles, and also

setting cαi = (aαi )∗ =: v(α)i, i.e., c = a†. In this case the second order

equations of motion read

1

2
q̈i =

∑
j 6=i

FijFji
2 cot(

qij
2 )

1 + sinh−2(γ) sin2(
qij
2 )
.

If d = 1, then FijFji = |Fij|2 = FiiFjj and the gauge invariant content

of the model is governed by the chiral RS Hamiltonian

H+
RS =

∑
i

e2pi
∏
j 6=i

1 +
sinh2 γ

1 + sin2 qi−qj
2

1
2

via the change of variables Fjj = |vi|2 = e2pj ∏
i 6=j

[
1 + sinh2 γ

1+sin2 qi−qj
2

]1
2
.

The trigonometric RS model was derived by L.F. and Klimč́ık (2009)

by Hamiltonian reduction of the Heisenberg double of the Poisson–Lie

group U(n), which served as the starting point for the reported work.
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The rest of the talk

• The ‘free’ system to be reduced

• The moment map and the definition of the reduction

• The first model of the reduced phase space and connection with

the Gibbons–Hermsen model

• The reduced equations of motion and the second model of the

reduced phase space

• Degenerate integrability

• Conclusion
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We shall apply symplectic reduction to an ‘obviously integrable’ Hamil-
tonian system on the real, 2n2 + 2nd dimensional symplectic manifold

M = GL(n,C)× Cn×d.
We begin by decomposing the real Lie algebra gl(n,C) as gl(n,C) =
u(n) + b(n), where b(n) denotes the Lie algebra of upper triangular
complex matrices having real diagonal entries. Then b(n) and u(n) are
isotropic subalgebras with respect to the non-degenerate bilinear form

〈X,Y 〉 := =tr(XY ), ∀X,Y ∈ gl(n,C).

Using the r-matrix on gl(n,C) given by R := 1
2

(
Pu(n) − Pb(n)

)
, we

introduce two Poisson structures on C∞(GL(n,C),R):

{f, h}± := 〈∇f,R∇h〉 ± 〈∇′f,R∇′h〉,
where 〈∇f(K), X〉 := d

dt

∣∣∣
t=0

f(etXK) ∀X ∈ gl(n,C) and K ∈ GL(n,C),
and similar for the right-derivative ∇′f .

The minus bracket makes GL(n,C) into a real Poisson–Lie group, while
the plus one gives a symplectic structure. The former is called the
Drinfeld double Poisson bracket and the latter the Heisenberg double
Poisson bracket. U(n) and B(n) are Poisson submanifolds w.r.t. the
minus bracket, and thus become Poisson–Lie groups, equipped with
the inherited Poisson structures denoted { , }U and { , }B.
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The Heisenberg double goes back to Semenov-Tian-Shansky (1985),
and its symplectic form was found by Alekseev and Malkin (1994). For
any element K ∈ GL(n,C), use the Iwasawa decompositions

K = bLg
−1
R = gLb

−1
R with bL, bR ∈ B(n), gL, gR ∈ U(n),

and define the maps ΛL,ΛR into B(n) and ΞL,ΞR into U(n) by

ΛL(K) := bL, ΛR(K) := bR, ΞL(K) := gL, ΞR(K) := gR.

Then ΩGL =
1

2
=tr(dΛLΛ−1

L ∧ dΞLΞ−1
L ) +

1

2
=tr(dΛRΛ−1

R ∧ dΞRΞ−1
R ).

To build (M,ΩM), equip Cn = R2n with the U(n) covariant Poisson
structure:

{wi, wl} = i sgn(i− l)wiwl, ∀1 ≤ i, l ≤ n,

{wi, wl} = i δil(2 + |w|2) + iwiwl + i δil

n∑
r=1

sgn(r − i)|wr|2 .

This is due to Zakrzewski (1996), and we found its symplectic form

ΩCn =
i

2

n∑
k=1

1

Gk
dwk ∧ dwk +

i

4

n−1∑
k=1

1

GkGk+1
dGk+1 ∧ (wkdwk − wkdwk)

where Gj = 1 +
∑n
k=j |wk|

2 (j = 1, . . . , n) and Gn+1 := 1.
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We take d > 1 independent, Cn-valued variables, w1, . . . , wd, called
primary spins, which give W := (w1, . . . , wd) ∈ Cn×d. The so obtained
Poisson bracket and symplectic form are denoted { , }W and ΩW.

The phase space to be reduced is M := GL(n,C)×Cn×d endowed with
the symplectic form ΩM = ΩGL + ΩW and the corresponding product
Poisson structure { , }M. M carries the Abelian Poisson algebra H

generated by the ‘free’ Hamiltonians Hk:

Hk(K,W ) :=
1

2k
tr(Lk) with L := bRb

†
R = (K†K)−1, k = 1, . . . , n.

Along the Hamiltonian flow of Hk, we have

gR(t) = exp(iL(0)kt)gR(0),

while bR, bL and W do not change. Therefore the arbitrary functions of
bL, bR,W form the Poisson algebra C of constants of motion, i.e., the
commutant of H in C∞(M).

The functional dimensions of H and C add up to the dimension of M
(since bRb

†
R = gR

(
b−1
L (b−1

L )†
)
g−1
R ). This means that the ‘free’ Hamilto-

nians H form a degenerate integrable system on M. The generic level
surfaces of C are n-dimensional tori. (Liouville integrability holds, too.)
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Suppose that we have a Poisson map, Λ, from a symplectic manifold
M into the Poisson–Lie group (B(n), { , }B). Then, for any X ∈ u(n)
the following formula defines a vector field XM on M:

LXM(F) ≡ XM[F] :=
〈
X, {F ,Λ}MΛ−1

〉
, ∀F ∈ C∞(M).

This generates an infinitesimal left action of U(n). If it integrates
to a global action of U(n), then the resulting action is Poisson, i.e.,
the action map A : U(n) ×M → M is Poisson. Then Λ is called the
(Poisson–Lie) moment map for the corresponding Poisson action.

Picking a moment map value, µ, one obtains the reduced phase space

Mred := Λ−1(µ)/U(n)µ

where U(n)µ is the isotropy group of µ w.r.t. dressing action of U(n)
on B(n), given by Dressg(µ) := ΛL(gµ). If the action of U(n)µ is free,
then Mred is a smooth symplectic manifold. Letting ιµ : Λ−1(µ) →M
and πµ : Λ−1(µ)→Mred denote the natural maps, one has

π∗µΩred = ι∗µΩM, π
∗
µFred = ι∗µF , {F ,H}M ◦ ιµ = {Fred,Hred}red ◦ πµ

for U(n)-invariant functions on M, with reduced symplectic form Ωred
and corresponding Poisson structure. (This generalization of Marsden–Weinstein

reduction is due to J.–H. Lu (1990).)
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We have a Poisson map b from (Cn,ΩCn) to B(n) that satisfies

1n + ww† =: b(w)b(w)†

and generates the natural left action of U(n) on Cn. Explicitly,

bjj(w) =
√
Gj/Gj+1, bij(w) =

wiwj√
GjGj+1

, ∀1 ≤ i < j ≤ n.

Our construction is based on the product moment map Λ :M→ B(n):

Λ(K,W ) := ΛL(K)ΛR(K)b(w1)b(w2) · · ·b(wd),

for (K,W ) ∈M ≡ GL(n,C)×Cn×d.(Recall: ΛL(K) = bL for K = bLg
−1
R ).

We choose the moment map value eγ1n with an arbitrary γ > 0. The

reduced phase space

Mred = Λ−1(eγ1n)/U(n)

is then a smooth, and actually real analytic, symplectic manifold.
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The U(n) action generated by Λ has a complicated form, but it simpli-

fies in terms of suitable variables. Instead of K,w1, . . . , wd we introduce

the new variables

gR, bR and v(α) := bRb(w1) · · ·b(wα−1)wα for 1 ≤ α ≤ d.

The map (K,w1, . . . , wd) 7→ (gR, bR, v(1), . . . , v(d)) is a diffeomorphism.

Instead of bR, we may use L := bRb
†
R. The v(α) are called ‘dressed

spins’. The Poisson–Lie action of U(n) is orbit-equivalent to the ‘ob-

vious action’, where η ∈ U(n) acts as

(gR, bR, v(1), . . . , v(d)) 7→
(
ηgRη

−1,Dressη(bR), ηv(1), . . . , ηv(d)
)

and the transformation of bR is equivalent to L 7→ ηLη−1.

Consider the following U(n) invariant complex functions on M:

Ikαβ := tr
(
v(α)v(β)†Lk

)
= v(β)†Lkv(α) , 1 ≤ α, β ≤ d, k ≥ 0.

They belong to the commutant of the ‘free’ Hamiltonians, and their

real and imaginary parts generate a polynomial Poisson algebra. This

descends to Mred and underlies the degenerate integrability of Hred.
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We now construct our first model of the reduced phase space. Since

gR can be diagonalized, every gauge orbit has representatives in

M0 := {(Q, bR,W ) ∈ Λ−1(eγ1n) | Q ∈ Tn}.

We focus on the dense subset Mreg
0 where Q is regular. Using the (di-

agonal× strictly upper-triangular) decomposition B(n) = B(n)0B+(n),

we can write

bR = b0b+ and b(w1)b(w2) · · ·b(wd) =: S(W ) =: S0(W )S+(W ).

Then the moment map constraint becomes equivalent to

S0(W ) = eγ1n and b+S+(W ) = Q−1b+Q.

The first equation constraints W only, while the second one permits us

to express b+ in terms of Q = eiq ∈ Tnreg and W . The explicit formula

of b+(Q,W ) is given in our paper.

Note that Q ∈ Tnreg and b0 ≡ exp(p) (p = diag(p1, . . . , pn)) are arbitrary.

The reduced phase space can be parametrized Q, p and the constrained

primary spins, W , up to residual gauge transformations.
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In case one wish to see b+(Q,W ) explicitly, define Ia,a+j = 1
Qa+jQ

−1
a −1

.

In fact, the solution of the constraint has the form b
a,a+1
+ = Ia,a+1S

a,a+1
+ ,

and for k = 2, . . . , n− a

b
a,a+k
+ = Ia,a+kS

a,a+k
+ +higher order polynomials in S+ and the Ia,a+j.

In full details,

b
a,a+k
+ =

∑
m=2,...,k

(i1,...,im)∈Nm
i1+···+im=k

m∏
α=1

Ia,a+i1+···+iαS
a+i1+···+iα−1,a+i1+···+iα
+

The message is that in terms of this model of the reduced phase space

the symplectic form is simple, but the commuting Hamiltonians and

the equations of motion are rather complicated.

15



The map φ : Cn×d → b(n)0 ' Rn defined by writing S0(W ) := exp(φ(W ))

is the moment map for a Hamiltonian torus action. Explicitly, this ac-

tion is given by τ · (w1, . . . , wd) = (τw1, . . . , τwd), ∀τ ∈ Tn.

Lemma. The moment map φ : Cn×d → b(n)0 is proper, and the

reduced space of primary spins, Cn×dred := φ−1(γ1n)/Tn, is a smooth,

compact and connected symplectic manifold of dimension 2n(d− 1).

With the normalizer N (n) of Tn, consider the regular part of Mred:

Mreg
red =Mreg

0 /N (n) = (Mreg
0 /Tn)/Sn, (Sn = N (n)/Tn).

Theorem 1. The covering space Mreg
0 /Tn of the regular part of the

reduced phase space can be identified with the symplectic manifold

T ∗Tnreg × Cn×dred

equipped with its natural product symplectic structure. The dense

open submanifold Mreg
red ⊆ Mred is connected, and consequently Mred

is also connected.
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Let us connect our reduced system with the spin Sutherland model of
Gibbons and Hermsen (1984). For this, we introduce a positive ‘scaling
parameter’ ε and make the replacements

p→ εp, W → ε
1
2W, Q→ Q, ΩM → ε−1ΩM, γ → εγ

With L := bRb
†
R and bR = eεpb+(Q, ε

1
2W ), we find

tr(L±1) = n± 2ε tr(p) + 2ε2tr(p2) + ε2
∑
i<j

|(w•i , w
•
j)|2

|QjQ−1
i − 1|2

+ o(ε2)

where w•i ∈ Cd with components wαi , and (w•i , w
•
j) :=

∑d
α=1w

α
i w

α
j . Writ-

ing Qj = eiqj, we obtain on Mreg
0

lim
ε→0

1

8ε2
(tr(L) + tr(L−1)− 2n) =

1

2
tr(p2) +

1

32

∑
i 6=j

|(w•i , w
•
j)|2

sin2 qi−qj
2

,

which reproduces Hamiltonian of the (real, trigonometric) Gibbons–
Hermsen model, and

lim
ε→0

ε−1 (ΩM) =
n∑

j=1

dpj ∧ dqj +
i

2

n∑
j=1

d∑
α=1

dwαj ∧ dw
α
j ,

which reproduces the symplectic form of the Gibbons–Hermsen model.
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Now we describe the commuting vector fields generated by the Hamil-

tonians Hm := 1
2mtr(Lm) for m = 1, . . . , n. Before reduction, we

parametrize the phase space by the variables (gR, L, v), where L = bRb
†
R

and v = (v(1), v(2), . . . , v(d)) ∈ Cn×d denotes the ‘dressed spins’.

The Hamiltonian vector field XHm reads

XHm[gR] = iLmgR, XHm[v(α)] = 0, XHm[L] = 0.

Its projection onto Mred does not change if we add any infinitesimal

gauge transformation, i.e., consider YHm given by

YHm[gR] = iLmgR + [Z(gR, L, v), gR],

YHm[v(α)] = Z(gR, L, v)v(α),

YHm[L] = [Z(gR, L, v), L],

with arbitrary Z(gR, L, v) ∈ u(n). To determine the projection, one may

use the restriction of YHm to

M0 ≡ Λ−1(eγ1n) ∩Ξ−1
R (Tn) where gR := Q := eiq ∈ Tn.
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Proposition 1. If (Q,L, v) ∈M0, then L can be expressed in terms of

Q and v as follows:

Lij =
Fij

e2γQjQ
−1
i − 1

with F :=
d∑

α=1

v(α)v(α)†.

Conversely, if the Hermitian matrix L given by the above formula is

positive definite, then (Q,L, v) ∈ M0. Thus, M0 is identified with an

open subset of Tn × Cn×d.

We focus on the regular part, and choose Z(Q,L, v) := Km(Q,L) with

Km(Q,L)kk = 0 and

Km(Q,L)kl = −
1

2
i(Lm)kl −

i

2
i(Lm)kl cot

(
qk − ql

2

)
, ∀k 6= l.

which guarantees tangency of the restricted vector field, Y 0
Hm

, to Mreg
0 .

One may add an arbitrary Lie(Tn)-valued function λ(Q, v) to Km, ex-

pressing the residual infinitesimal gauge transformations.
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Proposition 2. Hm := 1
2mtr(Lm) induces the vector field Y 0

Hm
onMreg

0 ,

Y 0
Hm[Q] = i(Lm)diagQ

Y 0
Hm[v(α)] = Km(Q,L)v(α)

Y 0
Hm[L] = [Km(Q,L), L],

which descends to the Hamiltonian vector field of the corresponding

reduced Hamiltonian on Mreg
red ⊂Mred.

Corollary. Consider H := (e2γ − 1)tr(L). Then the evolution equation

on Mreg
0 corresponding to the vector field Y 0

H can be written as follows:

1

2
q̇j :=

1

2i
Y 0
H[Qj]Q

−1
j = Fjj,

v̇(α)i := Y 0
H[v(α)i] = −

∑
j 6=i

Fijv(α)jV
(
qj − qi

2

)
with the ‘potential function’ V (x) = cotx−cot(x−iγ). This reproduces

the spin RS equations of motion of Krichever and Zabrodin by setting

xi = qi/2 and imposing the reality conditions cαi = (aαi )∗ ≡ v(α)i.
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We have also calculated the reduced Poisson bracket in terms of the

variables Q = eiq, v that appear in the reduced equations on motion.

More precisely, we did this on an Sn covering space of a dense open

subset of Mred. Our model of this dense open subset is given by

M̌reg
0,+ := {(Q,L(Q, v), v) ∈Mreg

0 |
∑

1≤α≤d
v(α)i > 0 for i = 1, . . . , n}.

That is, we assumed that the all components of the Cn-vector

Ui :=
∑

1≤α≤d
v(α)i

are non-zero, and fixed the Tn gauge freedom by constraining them to

be real and positive.

We proceeded by calculating the Poisson brackets of the following U(n)

invariant functions on the unreduced phase space M:

fαβm := tr(v(α)v(β)†gmR ) = v(β)†gmR v(α) , fm := tr(gmR ).

They reduce to f
αβ
m =

∑n
i=1 v(α)iQ

m
i v(β)i and fm =

∑n
i=1Q

m
i , and their

reduced Poisson brackets determine those of qi and v(α)j on M̌reg
0,+.
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We obtain the simple reduced Poisson brackets

{qi, qj}red = 0 , {v(α)i, qj}red = −δijv(α)i ,

but the formulae for {v(α)i, v(β)j}red and {v(α)i, v(β)j}red are rather

involved. These reduced Poisson brackets enjoy a residual Sn symmetry,

and the PBs of the Sn invariant functions descend to M̌reg
red ≡ M̌

reg
0,+/Sn.

We have checked that reduced Hamiltonian

H(Q, v) = (e2γ − 1) tr(L(Q, v)) =
n∑

k=1

d∑
α=1

|v(α)k|2

generates the correct ‘projected Hamiltonian vector field’ on the gauge

slice M̌reg
0,+, as it must. We also determined the Poisson brackets of

the Lax matrix L(Q, v), which turned out to have the form

{L1, L2}red = r12L1L2 + L1L2t12 − L1s21L2 + L2s12L1 ,

where t12 = −s12+s21−r12, and both r and s are ‘fully dynamical’. This

is consistent with the fact that the functions tr(Lk) are in involution.

(For explicit formulae, see Theorem 5.8 and Proposition 5.10. in our paper.)
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The reduced dynamics is ‘solvable by algebraic manipulations’. We

finish by sketching its degenerate integrability, i.e., the construction

of sufficient number of integrals of motion. For this, we consider the

polynomial subalgebra of C∞(M)U(n):

IL = R[trLk,<(Ikαβ),=(Ikαβ) | 1 ≤ α, β ≤ d, k ≥ 0], Ikαβ := tr
(
v(α)v(β)†Lk

)
.

This is closed under the Poisson bracket and its center contains

Htr := R[trLk, k ≥ 0] .

Explicitly, we have

{IMαβ, I
N
γε} = 2iδαεI

M+N+1
γβ − 2iδγβI

M+N+1
αε

+ i(δαε − δγβ)IMαβI
N
γε + 2iδαε

∑
µ<α

INγµI
M
µβ − 2iδγβ

∑
λ<β

IMαλI
N
λε

+ i sgn(γ − α)IMγβI
N
αε − i sgn(ε− β)INγβI

M
αε

+ i

M−1∑
b=0

+
N−1∑
b=0

(IbγβIM+N−b
αε − IM+N−b

γβ Ibαε
)

and the reality property {IMαβ, INγε} = {IMαβ, INγε}.
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Our Hamiltonian reduction actually works in the real-analytic category,

and Htr and IL descend to polynomial Poisson algebras on the con-

nected, real-analytic reduced symplectic manifold (Mred,Ωred).

Theorem 2. The reduced polynomial algebras of functions Hred
tr and

Ired
L inherited from Htr and IL have functional dimension n and 2nd−
n, respectively. In particular, on the phase space Mred of dimension

2nd, the Abelian Poisson algebra Hred
tr yields a real-analytic, degenerate

integrable system with integrals of motion Ired
L

Concretely, for any d > 1, we proved that the 2n(d − 1) integrals of

motion:

tr(Lk), Ik1,1, <[Ikα,1], =[Ikα,1]

with k = 1, . . . , n and α = 2, . . . , d− 1, are independent after reduction,

and n further integrals of motion may be selected from the real and

imaginary parts of the functions Ikd,1 in such a way that all in all these

provide a set of 2nd− n independent functions.

In the d = 1 case Hred
tr = Hred

L and one has (only) Liouville integrability.

24



To conclude, we have shown that the trigonometric real form of the
spin RS system of Krichever and Zabrodin arises from Hamiltonian
reduction of a ‘free system’ on a spin extension of the Heisenberg
double of U(n).

We gave two models of open dense subsets of the reduced phase space.
One is convenient for characterizing the reduced symplectic form and
for making contact with the Gibbons–Hermsen model. The other one
reproduces the K-Z equations of motion and gives their Hamiltonian
structure. We have proved degenerate integrability by displaying the
required constants of motion, and their Poisson algebra.

However, a global model of the reduced phase space was not obtained.

Some further open problems: Can one derive a dual system, for which
the commuting Hamiltonians should arise from Ξ∗R

(
C∞(U(n))U(n)

)
?

Can one construct compactified versions? What about the hyperbolic
real form? Quantization? Elliptic systems?

For details and refs, see our paper, arXiv:2007.08388 by M. Fairon,
L.F. and I. Marshall, which just appeared in Annales Henri Poincaré.
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