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• Tenet: Integrable systems are “shadows” of “free systems”.

• Two integrable many-body models are dual to each other if the
action variables of model-1 are the particle coordinates of model-2,
and vice versa. Self-duality occurs as a special case.

• Duality was originally discovered by Ruijsenaars (1988-95) in his
direct construction of action-angle variables for Calogero-Sutherland
type models and their relativistic generalizations.

• First illustration: derive the hyperbolic Sutherland and the ratio-
nal Ruijsenaars-Schneider models by a single reduction of certain
‘canonical free systems’, which will explain their duality.

• Second illustration: derive action-angle map for open Toda lattice.

1



The simplest self-dual system: HCal(q, p) =
1

2

n∑
k=1

p2
k +

1

2

∑
j 6=k

x2

(qk − qj)2

Symplectic reduction: Consider phase space T ∗iu(n) ' iu(n) × iu(n) := {(Q,P )}
with two families of ‘free’ Hamiltonians {tr (Qk)} and {tr (P k)}. Reduce by the
adjoint action of U(n) using the moment map constraint

[Q,P ] = µ(x) := ix
∑
j 6=k

Ej,k

This yields the self-dual Calogero system (OP [76], KKS [78]):

gauge slice (i): Q = q := diag(q1, . . . , qn), q1 > · · · > qn, with p := diag(p1, . . . , pn)

P = p+ ix
∑
j 6=k

Ejk

qj − qk
≡ LCal(q, p) Lax matrix, tr (dP ∧ dQ) =

n∑
k=1

dpk ∧ dqk

gauge slice (ii): P = p̂ := diag(p̂1, . . . , p̂n), p̂1 > · · · > p̂n, with q̂ := diag(q̂1, . . . , q̂n)

Q = −LCal(p̂, q̂) dual Lax matrix, tr (dP ∧ dQ) =
n∑

k=1

dq̂k ∧ dp̂k.

The alternative gauge slices give two models of the reduced phase space. Their
natural symplectomorphism is the self-duality map.

For a recent application, see T.F. Gorbe: A simple proof of Sklyanin’s for-
mula for canonical spectral coordinates of the rational Calogero-Moser system,
arXiv:1601.01181
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First dual pair of many-body models

The hyperbolic Sutherland model (1971):

Hhyp−Suth(q, p) ≡
1

2

∑
k

p2
k +

κ2

2

∑
j 6=k

1

sinh2(qj − qk)

Basic Poisson brackets: {qi, pj} = δij.

The rational Ruijsenaars-Schneider model (1986):

Hrat−RS(p̂, q̂) ≡
∑
k

cosh(q̂k)
∏
j 6=k

[
1 +

κ2

(p̂k − p̂j)2

]1
2

Basic Poisson brackets: {p̂i, q̂j} = δij (p̂i are RS ‘coordinates’)

Models describe n ‘particles’ moving on the line, and are integrable

(exhibit factorizable scattering).
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Canonical integrable systems

Consider real Lie algebra G := gl(n,C) with bilinear form

〈X,Y 〉 := <tr (XY ) ∀X,Y ∈ G,

and Lie group G := GL(n,C). Phase space is cotangent bundle

T ∗G ' G× G = {(g, JR) | g ∈ G, JR ∈ G}

with symplectic form

Ω = d〈JR, g−1dg〉

In terms of local coordinates xa and momenta πa: Ω =
∑
a dπa∧dxa

With basis {Ta} of G, the basic Poisson brackets are

{gjk, 〈JR, Ta〉} = (gTa)jk, {〈JR, Ta〉, 〈JR, Tb〉} = −〈JR, [Ta, Tb]〉

and any two functions of ‘configuration space’ variable g commute.
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Introduce matrix functions L1 and L2 on T ∗G by

L1(g, JR) := JR and L2(g, JR) := gg†

These ‘unreduced Lax matrices’ generate ‘canonical Hamiltonians’

Hj :=
1

j
<tr (Lj1), j = 1, . . . , n

Ĥk :=
1

2k
tr (Lk2), k = ±1, . . . ,±n

• Both {Hj} and {Ĥk} form Abelian algebras.

• One can write down their Hamiltonian flows explicitly.

• They are invariant under large symmetry group.

Interesting models are reductions of ‘obviously integrable’ systems.
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Hamiltonian flow defined by Hj:

g(t) = g(0) exp(t(JR(0))j−1), JR(t) = JR(0).

Flow generated by Ĥk:

JR(t) = JR(0)− t
(
g†(0)g(0)

)k
, g(t) = g(0).

We shall reduce by symmetry group

K := U(n)L × U(n)R

(ηL, ηR) ∈ K (ηL,R ∈ U(n)) acts by ‘canonical transformation’ ΨηL,ηR,

ΨηL,ηR : (g, JR) 7→ (ηLgη
−1
R , ηRJ

Rη−1
R )

‘Infinitesimal generators’ of symmetry are given by ‘moment map’

Φ : T ∗G→ u(n)L ⊕ u(n)R, Φ(g, JR) = ((gJRg−1)+,−JR+)

Here, ∀X ∈ G : X = X+ +X− with X+ ∈ u(n), X− ∈ iu(n)

• Hamiltonians Hj and Ĥk are invariant under symmetry group K.

• Φ is constant of motion for flows of Hj and Ĥk.
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Steps of the reduction procedure:

1. Fix the conserved quantities encoded by Φ to some constant

(in other words: introduce constraints on phase space).

2. Factorize (that is: eliminate variables) by ‘residual symmetry

transformations’: symmetries preserving the chosen value of Φ.

Result: Reduced phase space with Abelian algebras induced by {Hj}
and {Ĥk}.

The reduced systems can be solved by ‘projecting’ the original flows.

The art is to find ‘good value’ of the constants of motion.

Paradigm: Fix angular momentum in spherically symmetric problem

and factorize out angle corresponding to rotations around the fixed

angular momentum. The reduced system will be a ‘radial equation’.

Here: want to solve ‘radial equation’ by viewing it as reduction of ‘trivial problem’.
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Our choice of moment map constraint:

JR+ = 0, (gJRg−1)+ = µκ := iκ(1n − ww†)

with real constant κ and vector w† := (1,1, . . . ,1).

For technical convenience, we introduce ‘extended phase space’
where extended moment map will be set to zero, giving same result.

Define OLκ := {ξ = iκ(vv† − 1n) | v ∈ Cn, |v|2 = n }.

Elements ξ ∈ OLκ are of the form −ηµκη−1 with η ∈ U(n). OLκ is orbit
of U(n) with natural symplectic form, ΩO, and Poisson bracket

{〈ξ, T 〉, 〈ξ, V 〉} = 〈ξ, [T, V ]〉 ∀T, V ∈ u(n).

On extended phase space T ∗G×OLκ = {(g, JR, ξ)}, symmetry group
K acts by Ψext

ηL,ηR
: (g, JR, ξ) 7→ (ηLgη

−1
R , ηRJ

Rη−1
R , ηLξη

−1
L ).

Infinitesimal generator is Φext(g, JR, ξ) = ((gJRg−1)+ + ξ,−JR+).

We reduce by imposing Φext = 0, and then factorizing by K.
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Extended canonical integrable systems

Before reduction, we extend ‘canonical Hamiltonians’ to T ∗G×OLκ
by declaring that they do not depend on ‘auxiliary variable’ ξ ∈ OLκ :

Hext
j (g, JR, ξ) := Hj(g, J

R), Hext
k (g, JR, ξ) := Ĥk(g, JR)

Flows on T ∗G×OLκ are same as flows on T ∗G adding ξ(t) = ξ(0).

Extended Hamiltonians are spectral invariants of

Lext
1 (g, JR, ξ) = JR and Lext

2 (g, JR, ξ) = gg†,

since Hext
j = 1

j<tr ((Lext
1 )j) and Ĥext

k = 1
2ktr ((Lext

2 )k).

In general, Lax matrices matter only up to similarity transformation.

Now

Ψext
ηL,ηR

: Lext
1 7→ ηRLext

1 η−1
R , Ψext

ηL,ηR
: Lext

2 7→ ηLLext
2 η−1

L .

Therefore, the reduced Hamiltonians will be generated by reduced Lax matrices.
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Definition of the reduced systems

Reduced phase space is space of K-orbits in level set Φext = 0:

T ∗G×OLκ//0K ≡ (Φext)−1(0)/K

In our case this is a smooth manifold, as we shall see.

Using the natural injection and projection maps

ι : (Φext)−1(0)→ T ∗G×OLκ , π : (Φext)−1(0)→ (Φext)−1(0)/K

reduced symplectic form, Ωred, is characterized by

π∗Ωred = ι∗Ωext with Ωext = Ω + ΩO

In another language, Ωred encodes the so-called Dirac bracket.

Reduced Hamiltonians Hred
j and Ĥred

k are defined by

Hred
j ◦ π = Hext

j ◦ ι, Hred
k ◦ π = Ĥext

k ◦ ι

Next, we shall present two models of the reduced phase space.
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Notationwise, associate to any vector q ∈ Rn the diagonal matrix

q := diag(q1, . . . , qn).

Let C denote the open domain (Weyl chamber)

C := { q ∈ Rn | q1 > q2 > · · · > qn }.

Equip T ∗C ' C × Rn = {(q, p)} with the Darboux form

ΩT ∗C(q, p) :=
∑
k

dpk ∧ dqk

corresponding to the canonical Poisson bracket.

Define iu(n)-valued (Hermitian) matrix function L1 on T ∗C by

L1(q, p)jk := pjδjk − i(1− δjk)
κ

sinh(qj − qk)

L1 is actually the standard Lax matrix of the Sutherland model.
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First model: the Sutherland gauge slice S1

Theorem 1. The manifold S1 defined by

S1 := { (eq, L1(q, p),−µκ) | (q, p) ∈ C × Rn }

is a global cross section of the K-orbits in the submanifold (Φext)−1(0)

of T ∗G×OLκ . If ι1 : S1 → T ∗G×OLκ is the obvious injection, then in

terms of the coordinates q, p on S1 one has

ι∗1(Ωext) =
∑
k

dpk ∧ dqk.

That is, the Dirac bracket on S1 is just the canonical Poisson bracket {qi, pj} = δij.

Therefore, the symplectic manifold

(S1,
∑
k

dpk ∧ dqk) ' (T ∗C,ΩT ∗C)

is a model of the reduced phase space.

Theorem 1 due to Olshanetsky-Perelomov [76], Kazhdan-Kostant-Sternberg [78].
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Next, denote the elements of T ∗C = C × Rn as pairs (p̂, q̂).

Define n × n (Hermitian, positive definite) matrix-valued function
L2 on T ∗C by

L2(p̂, q̂)jk = uj(p̂, q̂)

[
iκ

iκ+ (p̂j − p̂k)

]
uk(p̂, q̂)

with

uj(p̂, q̂) := e−q̂j/2 ∏
m6=j

[
1 +

κ2

(p̂j − p̂m)2

]1
4

, j = 1, . . . , n.

Then define Rn-valued function

v(p̂, q̂) := L2(p̂, q̂)−
1
2u(p̂, q̂),

where u = (u1, . . . , un)T . It can be verified that |v(p̂, q̂)|2 = n.

Finally, introduce the OLκ -valued function

ξ(p̂, q̂) := ξ(v(p̂, q̂)) = iκ(v(p̂, q̂)v(p̂, q̂)† − 1n)

L2 is actually the standard Lax matrix of the Ruijsenaars-Schneider model.
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Second model: the Ruijsenaars gauge slice S2

Theorem 2. The manifold S2 defined by

S2 := { (L2(p̂, q̂)
1
2,2p̂, ξ(p̂, q̂)) | (p̂, q̂) ∈ C × Rn }

is a global cross section of the K-orbits in the submanifold (Φext)−1(0)

of T ∗G×OLκ . If ι2 : S2 → T ∗G×OLκ is the obvious injection, then in

terms of the coordinates p̂, q̂ on S2 one has

ι∗2(Ωext) =
∑
k

dq̂k ∧ dp̂k.

That is, the Dirac bracket on S2 is just the canonical Poisson bracket {p̂i, q̂j} = δij.

Therefore, the symplectic manifold

(S2,
∑
k

dq̂k ∧ dp̂k) ' (T ∗C,ΩT ∗C)

is a model of the reduced phase space.

Theorem 2 is the main result of L.F.-C. Klimč́ık: J. Phys. A: Math. Theor. 42 (2009) 185202
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Consequences

1. Since S1 and S2 are two models of the reduced phase space,

there exists a natural canonical transformation (symplectomorphism)

between these two models:

(S1,
∑
k

dpk ∧ dqk) ≡ (T ∗G×OLκ//0K,Ω
red) ≡ (S2,

∑
k

dq̂k ∧ dp̂k).

By definition, a point of S1 is related to that point of S2 which

represents the same element of the reduced phase space.
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2. The K-invariant Hamiltonians Hext
j and Ĥext

k descend to the

reduced Hamiltonians {Hred
j } and {Ĥred

k } on T ∗G×OLκ//0K, whose

commutativity follows from the construction. The restrictions of

the ‘unreduced Lax matrices’ to S1 and S2 satisfy

Lext
1 |S1

= L1 and Lext
2 |S2

= L2.

The reduced Hamiltonians take following form in terms of the

‘gauge slices’ (S1,
∑
k dpk ∧ dqk) and (S2,

∑
k dq̂k ∧ dp̂k):

on S1 : Hred
j =

1

j
tr (Lj1) , Ĥred

k =
1

2k

n∑
i=1

(e2qi)k

on S2 : Hred
j =

1

j

n∑
i=1

(2p̂i)j , Ĥred
k =

1

2k
tr (Lk2)
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3. L1 is the Lax matrix of the hyperbolic Sutherland model and

L2 is the Lax matrix of the rational Ruijsenaars-Schneider model.

Indeed, the basic Hamiltonians of these models are

Hhyp−Suth(q, p) ≡
1

2

∑
k

p2
k +

κ2

2

∑
j 6=k

1

sinh2(qj − qk)
=

1

2
tr (L1(q, p)2)

Hrat−RS(p̂, q̂) ≡
∑
k

cosh(q̂k)
∏
j 6=k

[
1 +

κ2

(p̂k − p̂j)2

]1

2

=
1

2
tr (L2(p̂, q̂) + L2(p̂, q̂)−1)

Besides the Hamiltonians, also the Lax matrices arose naturally

from the reduction.
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4. Consider two points of S1 and S2 that lie on the same K-orbit,

and are parametrized by some (q, p) ∈ C ×Rn and by (p̂, q̂) ∈ C ×Rn.

Then there exists η ∈ U(n) for which

(ηeqη−1, ηL1(q, p)η−1,−ηµκη−1) = (L2(p̂, q̂)
1
2,2p̂, ξ(p̂, q̂)).

Therefore:

The matrix 2p̂, which encodes coordinate-variables of rational RS

model, results by diagonalizing the Sutherland Lax matrix L1(q, p).

Conversely, e2q, which encodes coordinate-variables of Sutherland

model, results by diagonalizing the RS Lax matrix L2(p̂, q̂).

This reproduces, effortlessly, original direct construction due to Ruijsenaars (1988).
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5. Now it is obvious that the two many-body models are dual to

each other.

On the one hand, the Ruijsenaars-Schneider particle-coordinates

p̂1, . . . , p̂n regarded as functions on S1 define action variables for the

hyperbolic Sutherland model.

On the other, the Sutherland particle coordinates q1, . . . , qn regarded

as functions on S2 can serve as action variables for the rational

Ruijsenaars-Schneider model.

19



6. The known solution algorithms for the commuting Hamiltonians

of the models are easy byproducts of the geometric approach.

First, take an initial value on the ‘gauge slice’ S1 and project the

‘free flow’ of Hext
j back to S1. This implies that Hred

j generates the

following evolution for the Sutherland coordinate variables:

e2q(t) = D[eq(0) exp(2tL1(0)j−1)eq(0)],

where D is the operator that brings its Hermitian matrix-argument

to diagonal form with eigenvalues in non-increasing order.

Similarly, we obtain that Ĥred
k generates the following flow for the

Ruijsenaars-Schneider coordinate variables:

2p̂(t) = D[2p̂(0)− tL2(0)k].

The particles move as eigenvalues of ‘geodesic in a space of matrices’, as usual.
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Conclusions so far and plan of what follows

We interpreted the duality between the hyperbolic Sutherland and

the rational Ruijsenaars-Schneider models in geometric terms.

Thus we obtained a Lie theoretic understanding of results due to

Ruijsenaars (88), who discovered the duality ‘by bare hands’.

Our symplectic reduction approach simplifies a considerable portion

of the original technical arguments. It can be – and was – adapted

to explore more complicated cases of the duality, too.

Next, I present a group-theoretic interpretation of old results about

action-angle map and duality for open Toda

HToda(q, p) =
1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1

(based on Phys. Lett. A 377, 2917-2921 (2013))
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Ruijsenaars (1990) found explicit action-angle map for Toda Hamiltonian

system (M,ω,H) and introduced dual integrable system.

M := Rn×Rn = {(q, p)}, ω =
n∑
i=1

dpi∧dqi, H =
1

2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1

Phase space of action-angle variables: (M̂, ω̂)

M̂ := {(p̂, q̂) ∈ Rn × Rn | p̂1 > p̂2 > · · · > p̂n}, ω̂ =
n∑
i=1

dq̂i ∧ dp̂i

Formula of action-angle map R : M̂ →M

qj = ln(σn+1−j/σn−j), pj = σ̇n+1−j/σn+1−j − σ̇n−j/σn−j,

σk :=
∑
|I|=k

e
∑
l∈I q̂l

∏
i∈I,j /∈I

|p̂i − p̂j|−1 (∀k = 1, . . . , n, σ0 := 1)

I ⊂ {1,2, . . . , n} subset of cardinality |I| = k, σ̇k := {σk, 1
2
∑n
i=1 p̂

2
i }M̂

Action-angle map R converts H into free form: H ◦R = 1
2
∑n
i=1 p̂

2
i .

Dual system: (M̂, ω̂, Ĥ) with Ĥ := σ1 = eqn◦R =
∑n
i=1 e

q̂i
∏
j 6=i

1
|p̂i−p̂j|
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Toda action-angle map and duality from symplectic reduction

Unreduced phase space: T ∗GL(n,R) ' GL(n,R) × gl(n,R) = {(g,J )} equipped
with symplectic form Ω := 2dtr (J g−1dg).

Two sets of commuting “free Hamiltonians” {Hk} and {Ĥk}:

Hk(g,J ) :=
1

k
tr (J k), Ĥk(g,J ) := mk((ggt)−1), k = 1, . . . , n,

Notation: mk(X) := det(Xk) is k-th leading principal minor of n× n matrix X.

Reduce by the symmetry group N+ × O(n,R). N+ is upper triangular nilpotent
subgroup and (η+, ηO) from symmetry group acts by the map Ψ(η+,ηO):

Ψ(η+,ηO)(g,J ) := (η+gη
−1
O , ηOJ η−1

O ).

This Hamiltonian action is generated by the moment map Φ:

Φ(g,J ) = ((gJ g−1)lower−triangular part,−Janti−symmetric part).

Reduction relevant for Toda is defined by imposing the moment map constraint

Φ(g,J ) = µ0 := (I−,0), (Olshanetsky-Perelomov, Adler, Kostant, Symes, . . . )

where I− :=
∑n−1

i=1 Ei+1,i contains 1 in its entries just below the diagonal.

Reduced phase space Φ−1(µ0)/(N+×O(n,R)) inherits 2 Abelian Poisson algebras.
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First model of the reduced phase space: ‘Toda gauge’

By Iwasawa decomposition, any g ∈ GL(n,R) can be uniquely written as

g = g+gAgO, (g+, gA, gO) ∈ N+ ×A×O(n,R).

Associate to (q, p) ∈M := Rn × Rn the diagonal matrices

Q(q) := −
n∑
i=1

qn+1−iEi,i, P (p) := −
n∑
i=1

pn+1−iEi,i

and define Jacobi matrix (alias Toda Lax matrix, since H(q, p) = 1
2
tr (L(q, p)2))

L(q, p) := P (p) + e−Q(q)/2I−e
Q(q)/2 + eQ(q)/2I+e

−Q(q)/2.

The following manifold S is a global cross section of the orbits of the “gauge
group” N+ ×O(n,R) in the “constraint surface” Φ−1(µ0):

S := {(eQ(q)/2, L(q, p)) | (q, p) ∈M}.
Reduced symplectic form is represented by pull-back ι∗S(Ω) =

∑n
i=1 dpi ∧ dqi ≡ ω.

The equalities ι∗S(Hk) =
1

k
tr (Lk), ι∗S(Ĥk) =

k∏
j=1

eqn+1−j show that

in terms of model (S, ι∗S(Ω)) ' (M,ω) of reduced phase space, the unreduced free
Hamiltonians {Hk} descend to commuting Toda Hamiltonians and {Ĥk} descend
to (functions of) Toda position variables.

All this is well-known. I call S ‘Toda gauge’: a model of Φ−1(µ0)/(N+×O(n,R)).
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Second model of the reduced phase space: ‘Moser gauge’

Rn>: set of vectors p̂ satisfying p̂1 > p̂2 > · · · > p̂n. Rn+: vectors w having positive
components. For (p̂, w) ∈ Rn> × Rn+ define n× n matrices Λ and Γ by

Λ(p̂) := diag(p̂1, p̂2, . . . , p̂n), Γ(p̂, w)i,k := wi (p̂i)
k−1 (diagonal× Vandermonde)

My main observation: The manifold

Ŝ := {(Γ(p̂, w)−1,Λ(p̂)) | (p̂, w) ∈ Rn> × Rn+}

is a global cross-section of the orbits of N+×O(n,R) in constraint surface Φ−1(µ0).

The key is to consider Iwasawa decomposition

Γ(p̂, w)−1 = η+(p̂, w)ρ(p̂, w)ηO(p̂, w) with ρ(p̂, w) = diag(ρ1(p̂, w), . . . , ρn(p̂, w)).

Fact: ηO(p̂, w)Λ(p̂)ηO(p̂, w)−1 is Jacobi matrix, determines (p̂, w) up to scale of w.

Then unique gauge transformation from Ŝ to S yields a map

R : Ŝ → S, (p̂, w) 7→ (eQ(q)/2, L(q, p)) = (ρ(p̂, w), ηO(p̂, w)Λ(p̂)ηO(p̂, w)−1).

It is EASY to find this map explicitly since Γ(p̂, w) is diagonal× Vandermonde.

Using Cauchy-Binet, trivial calculation of Ĥk(g,J ) = mk((ggt)−1) in the two gauges gives

k∏
j=1

eqn+1−j ◦ R = mk(Γ(p̂, w)tΓ(p̂, w)) =
∑
|I|=k

(∏
l∈I

w2
l

∏
i,j∈I
i6=j

|p̂i − p̂j|
)
.

To finish, parametrize Moser’s variables (p̂, w) by Darboux coordinates (p̂, q̂).
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Ruijsenaars’ action-angle map and duality from reduction

Reduced symplectic form is easily calculated in the Moser gauge

ι∗
Ŝ
(Ω) = 2

n∑
i=1

d lnwi ∧ dp̂i +
n∑

j,k=1
j 6=k

dp̂j ∧ dp̂k
p̂j − p̂k

(thanks to C. Klimcik)

Corresponding Poisson brackets: {p̂i, p̂j} = 0, {p̂i, wj} = wj

2
δij, {wj, wk} = 1

2
wjwk

p̂j−p̂k .

These variables linearize the Toda flows, whose Hamiltonians become on Ŝ

ι∗
Ŝ
(Hk) =

1

2

n∑
i=1

(p̂i)
k.

Toda action-angle variables (p̂, q̂) are obtained by the parametrization

wi(p̂, q̂) := e
1

2
q̂i

n∏
j=1
j 6=i

|p̂i − p̂j|−
1

2 , (p̂, q̂) ∈ Rn> × Rn ≡ M̂,

which brings ι∗
Ŝ
(Ω) into Darboux form ω̂ =

∑n
i=1 dq̂i ∧ dp̂i.

Map R : Ŝ → S is automatically symplectomorphism, and “explains” Ruijsenaars’
formula. Reduced Hamiltonians ι∗

Ŝ
(Ĥk) are Ruijsenaars’ dual Hamiltonians.

Toda position variables qk are action variables of main dual Hamiltonian:

Ĥ = eqn ◦ R = ι∗
Ŝ
(Ĥ1) =

n∑
i=1

w2
i =

n∑
i=1

eq̂i
∏
j 6=i

1

|p̂i − p̂j|.
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CONCLUDING REMARKS

The same general ideas have been applied to explain almost all the
other known duality relations, and were also used to find new ones.
For example, one of the most complicated cases is the relation
between the trigonometric Ruijsenaars-Schneider system

Htrigo−RS =
n∑

k=1

(cosh pk)
∏
j 6=k

[
1 +

sinh2x

sin2(qk − qj)

]1
2

and the physically very different dual system

Ĥtrigo−RS =
n∑

k=1

(cos q̂k)
∏
j 6=k

[
1−

sinh2x

sinh2(p̂k − p̂j)

]1
2

This was enlightened by reduction of Heisenberg double of P-L U(n)

There are still many open problems, including the self-duality of

Hhyp−RS =
n∑

k=1

(cosh pk)
∏
j 6=k

[
1 +

sinh2x

sinh2(qk − qj)

]1
2
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